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What is the difference?

Explaining a model from the post-hoc manner Improving a model’s intrinsic interpretability
freeze

i train

. Output

Y Model
* Inference stage * Training stage
* Explain model predictions « Make model prediction

Interpreter . .

* No change on model behavior more interpretable

decision making * No (or minor) change on model

architecture
Building Interpretable Neural Network Models

Self-interpretable v' Comparable or better performance

Model to traditional neural networks




Building Interpretable Neural Networks

e Self-explaining models

* SELFEXPLAIN



Towards Robust Interpretability

with Self-Explaining Neural Networks

David Alvarez-Melis, Tommi S. Jaakkola

(NeurlPS, 2018)



Building complex self-explaining models

* Providing human-interpretable explanations

* Maintaining competitive performance



Interpretability: linear and beyond

Linear regression

n
fx) = 2 0;x; Feature contribution {6, }
i=1



Interpretability: linear and beyond

Linear regression

n
fx) = 2 0;x; Feature contribution {6, }
i=1

Generalized coefficients
flx) =0(x)Tx 6 € ®© (acomplex model class)

As powerful as any
deep neural network,
but not interpretable
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Interpretability: linear and beyond

Linear regression

n
fx) = 2 0;x; Feature contribution {6;}
i=1

Generalized coefficients
flx) =0(x)Tx 6 € ®© (acomplex model class)

Local interpretability

xxx 600~ 6(x)

Vif (x) = 0(xp)

The stable coefficients
{6(x¢);} indicate feature
importance in the local area
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Linear regression

n
f(x) = Z 0;x; Feature contribution {6;}
i=1

Beyond raw features — feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

h(x): X - Z c R¥ (kissmall for interpretation)
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Linear regression

n
f(x) = Z 0;x; Feature contribution {6;}
i=1

Beyond raw features — feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

h(x): X - Z c R¥ (kissmall for interpretation)

* subset aggregates of the input (e.g., h(x) = Ax, A is a boolean mask matrix)

* predefined, pre-grounded feature extractors designed with expert knowledge (e.g.,
filters for image processing)

e prototype based concepts



Linear regression

n
f(x) = Z 0;x; Feature contribution {6;}
i=1

Beyond raw features — feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

h(x): X - Z c R¥ (kissmall for interpretation)

k
F@) = 0()Th(x) = Y 0()A),
=1

Concept importance
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Linear regression

n
f(x) = Z 0;x; Feature contribution {6;}
i=1

Further generalization ”

FG) = 0(Th(x) = ) 6():h();
=1

Y — g(zq1,:+, z;) (a general aggregation function)



Linear regression

n
fx) = 2 0,x; Feature contribution {6;}
i=1

Further generalization

k

FG) = 0(Th(x) = ) 6():h();
=1

Y — g(zq1,:+, z;) (a general aggregation function)

be permutation invariant
isolate the effect of individual h(x); in the output

preserve the sign and relative magnitude of the
impact of the relevance values 6 (x);



Linear regression

n
f(x) = Z 0;x; Feature contribution {6;}
i=1

Self-explaining models

f(x) = g(6,(x)hy(x), -+, O () hy (x))

-): aggregation function
9(): agereg 6 acts as coefficients of a

h(x): basis concepts linear model on the basis

concepts h(x)
6 € ©:a complex model

(conditional bounding ||8(x) — 8(y)|| with L||h(x) — h(y)]|)
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Question?
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Self-explaining models

f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable

. .. 0g
* Foreveryz; = 0;(x)h;(x), g satisfies oz, =0 Forevery x,, there exist § > 0
and L € R such that ||x — x| <
* 0O islocally difference bounded by h & implies [|6(x) — 0(xp)|l <

L|Ih(x) — h(xo)ll
* h(x)isan interpretable representation of x

e kissmall
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f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable

* Foreveryz; = 6;(x)h;(x), g satisfies % >0
l

@G islocally difference bounded by h
* h(x)isan interpretable representation of x
e kissmall

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores



f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable

* Foreveryz; = 6;(x)h;(x), g satisfies % >0
l

* 0 islocally difference bounded by h h(-) is a trivial input
feature indicator, while the
modeling capacity comes
from 6(-) (e.g., DNNs)

* h(x)isan interpretable representation of x

e kissmall

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores
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f(x) = g(61(x)hy(x), -+, 6 () (x))

_______________________________________________________________

g: monotone and completely additively separable !

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

For every z; = 0;(x)h;(x), g satisfies % >0
l

6 is locally difference bounded by h
h(x) is an interpretable representation of x

k is small

X zior Y Aiz; (A; > 0)

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores



f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable

* Foreveryz; = 6;(x)h;(x), g satisfies % >0
l

@G islocally difference bounded by h

_______________________________________________________________

* h(x)isan interpretable representation of x
Application-dependent

e kissmall

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores
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f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable
* Foreveryz; = 6;(x)h;(x), g satisfies % >0 0(xp) = V,f
l

j z = h(x) (around x,)

_______________________________________________

- » @ is locally difference bounded by h

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

* h(x)isan interpretable representation of x

e kissmall

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores
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f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable
* Foreveryz; = 6;(x)h;(x), g satisfies % >0 0(xp) = V,f
l

j z = h(x) (around x,)

_______________________________________________

- » @ is locally difference bounded by h

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

V.f =V, fJ% (chain rule)
* h(x)isan interpretable representation of x —
(Jacobian)

e kissmall

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores



f(x) = g(61(x)hy(x), -+, 6 () (x))

* g: monotone and completely additively separable
* Foreveryz; = 6;(x)h;(x), g satisfies % >0 0(xp) = V,f
l

| z = h(x) (around x,)

_______________________________________________

' * @ is locally difference bounded by h

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

V.f =V, fJ% (chain rule)
H(X)T]!cl ~ V,f
* feissmall Lo(f () = ||Vof (¥) = 0O TJE)|| = 0

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores

* h(x)isan interpretable representation of x
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f(x) = 9(91(x)h1(x): " Hk(x)hk(x)) Objective

Ly, (f(x),y) + AL (f (x))
* g: monotone and completely additively separable
* Foreveryz; = 6;(x)h;(x), g satisfies % >0 0(xp) = V,f

i e @ is locally difference bounded by h z = h(x) (around x,)

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

V.f =V, fJ% (chain rule)
H(X)T]!cl ~ V,f
* feissmall Lo(f () = ||Vof (¥) = 0O TJE)|| = 0

k
The explanation of f(x) is the set €¢(x) = {(hi(x), 0; (x))}l.=1 of basis concepts
and their influence scores

* h(x)isan interpretable representation of x
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Question?
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Learning interpretable basis concepts

h(x): X - Z c Rk

single pixels = textures, shapes

single words — phrases

Ideally, the basis concepts
would be informed by expert
knowledge (e.g., doctor-
provided features)

29



h(x): X - Z c Rkc

single pixels = textures, shapes

single words — phrases

Learning h

e training h as an autoencoder

e enforcing diversity through sparsity (few non-
overlapping concepts)

e providing interpretation on the concepts by
prototyping (e.g., by providing a small set of training
examples that maximally activate each concept)

Lh(x, f)

X = hgec(h(x))

(reconstruction)



h(x): X - Z c Rkc

single pixels = textures, shapes

single words — phrases

Learning h

training h as an autoencoder

enforcing diversity through sparsity (few non-
overlapping concepts)

providing interpretation on the concepts by

prototyping (e.g., by providing a small set of training
examples that maximally activate each concept)

Lh(x) f)

X = hgec(h(x))

Objective
Ly (f(x),y) + AL (f (x)) + yLp(x, %)



Learning interpretable basis concepts

oLy

BT"‘ reconstruction
loss Ly, v A
N1
I Ly

oL,
Wy
I » lclass label

daouoo

concept encoder h(-; w,,)

. \
relevance parametrizer 0( - ; wy)

Objective
Ly(f(x),y) + ALe(f (x)) + v Lp(x, %)
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Architectures

CL: convolutional layers

FC: fully-connected layers

Compas/Uct MNIST CI1FARI10
h(-) hiz) ==z CL(10,20) — FC(¢) . CL(10,20) — FC(¢) )
0(-) FC(10,5,5,1) CL(10,20) — FC(c-10) CL(2%,27,28 29 29) - FC(28,27, c- 10)
gl -) sum sum sum

Prediction performance is
comparable to baseline NNs
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Question?
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* Explicitness/Intelligibility: Are the explanations immediate and understandable?
e Faithfulness: Are relevance scores indicative of "true" importance?

 Stability: How consistent are the explanations for similar/neighboring examples?



Experiments

Explicitness/Intelligibility: Are the explanations immediate and understandable?

* The concepts are maximally activated by a set of training examples
* Concept 3 has a strong positive influence towards both prediction

* Concept 4 is also highly relevant to “2”

Saliency ~ Grad® . Grad. > Jeclusic SENN R TR
[nput Saliency  Grad*Input  Int.Grad e-LRI Occlusion LIME B | O 7 0
< - : = = Lo 2
7 g z ¥ = @ | 0¥ 0
. . -1
% [ D92
. - -l 07 0
&y &7 2 | 07 &
& Pl (O - Sk O
L 2, & &. "h ‘
- : - E’ | 02 0
| 0 7 &

™
—
—~

CORTNED e &3
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e Faithfulness: Are relevance scores indicative of "true" importance?

 Stability: How consistent are the explanations for similar/neighboring examples?



Experiments

Faithfulness: Are relevance scores indicative of "true" importance?

e Faithfulness: computing the correlations of probability drops (removing features) and relevance scores

* Overall SENN (self-explaining neural networks) can provide faithful interpretations

1.0 1.00-
| ' = . [l LA
0.5 H l ill I -.l II

ol
- AliE :

e @ix

bt
m©
E
B
‘ﬂ [
% 00 ~ 5 SHAP e = P s II o I I - I
£ B LIME ig- & = B o + =
IE -0.5 Bl SENN . Y E' 5 l I Y | P}
TR 1 *-9 . é -..
ionosphere heart diabetes abalone —1.00-T0 I ........ A 15 TN e o I e ) ) I B
1 2 3 45 6 7 & 9 V111213141516 171829202
Dataset Concept index
h(x) is identity h(x) is learnt
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 Stability: How consistent are the explanations for similar/neighboring examples?



Experiments

Stability: How consistent are the explanations for similar/neighboring examples?

* Existing interpretation methods are not robust to small perturbations

Original Saliency
g ¥
, L
R
P(7)~1.0000=+00 L-145

l{.'- " ::!

Grad*lnput

Int. Grad.

eLRP

Ocdusion

LIME
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Providing insights on designing self-explaining neural network models

Model architectures are selected empirically (requiring engineering effort)

It is still challenging to develop interpretable models in more complex
domains (e.g., larger image datasets, NLP tasks)



Building Interpretable Neural Networks

e Self-explaining models

* SELFEXPLAIN

42



SELFEXPLAIN: A Self-Explaining Architecture for

Neural Text Classifiers

Dheeraj Rajagopal, Vidhisha Balachandran,
Eduard Hovy, Yulia Tsvetkov

(EMNLP, 2021)



Local interpretable layer (LIL)

ldentifying local feature attributions in the input

Global interpretable layer (GIL)

Explaining model decisions as a function of influential training data

High-level phrase-based concepts



* Local interpretable layer (LIL)

ldentifying local feature attributions in the input

* Global interpretable layer (GIL)

Explaining model decisions as a function of influential training data

* High-level phrase-based concepts

M : a neural C-class classification model

SELFEXPLAIN builds into M and provides a set of explanations Z



Defining human-interpretable concepts (phrases)

Extract phrases via syntax trees

Input Component non-terminals
/S\ ot NGO = {ntj}ld
N vp (hit the ball)
/////\\\\\ (the ball)
Vv NP
A S: sentence
NP: noun phrase
D N VP: verb phrase
V: verb
D: determiner

John hit the ball N: noun



Concept-aware encoder E

-

=

(e.g., ROBERTa)

~

Encoder > hy

J

John

vp (hit the ball)

Yy
(the ball)
Vv NP D

hit the ball

Input Component non-terminals

x=(whr NG = {ng)

The representation of non-terminal nt;

ZWiETltj hi
u; =
7 len(nt))

47



Concept-aware encoder E
Input Component non-terminals

e ™~ x={wihar > Nk)= {ntf}u

wy —— Encoder > hy

e.g., ROBERTa : .
(e.g., ) The representation of non-terminal nt;

Wr —~ > hr
NS J
ZwiEntj hi
u; =
> 7 len(nt;)
N >Vp (hit the ball)
\ Y
v N_p(the 2l (@0 Ug is the pooled representation
| ([CLS] token representation)
D N

John hit the ball 48



Concept-aware encoder E
Input Component non-terminals

- ~N x={wihar > Nk)= {ntf}w

1 B — Encoder - hy

(e.g., ROBERTa)

N J

The representation of non-terminal nt;

ZWiETltj hi
u; =
7 len(nt))

N vp (hit the ball)

Yy
(the ball)
Vv NP C]

The output of the classification layer

ly = Softmax(Wyg(uS) + by)

5 N P, = argmax(ly)

[ A g(+): relu activation layer .



Question?
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Local interpretability layer (LIL)

Compute the local relevance score for all input concepts {ntj}l_] from the sample x

Activation difference: quantifies the contribution of each nt; to the label in comparison
to the contribution of the root node nt;s

Us

s | ]

N vp (hit the ball)

Y
(the ball)
’ 8 (@0

John hit the ball



Local interpretability layer (LIL)

Compute the local relevance score for all input concepts {ntj}” from the sample x

Activation difference: quantifies the contribution of each nt; to the label in comparison
to the contribution of the root node nt;s

Us

s | ]

N vp (hit the ball)

Y
(the ball)
‘ i (@0

ti = g(u;) — g(us) relu activation function

Sj = Softmax(thj + bv) LIL parameters
The relevance score of nt;

17 = (ly)ilizp, — (Sj)l-li:PC

] Original prediction Predicted label

John  hit  the  ball probabilities
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Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions



Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions

Training data . ™ peeeen Concept store ()
|
2 >
x( ) {q}l:NQ
 Tweqew)
= Tlen(qu)

e: the embedding layer



Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions

Training data . N Concept store () Retrieve K influential

- concepts for an input x
x@ " {q}n, - {ghx
"q
d(x,Q) =
[l I|I|q||
o = Swa 6W) q€0Q
K =
len(qy)

e: the embedding layer



Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions

Training data . N Concept store () Retrieve K influential Maximum Inner
Cw concepts for an input x Product Search
P
exp(d(us, )
(2) > - {q}. (q|x) =
b . qi1K p(q|x
t@31ng 2q exp(d(us, q'))
X-q
d(x,Q) =
x|l gl
_ Sweqew) q€Q
= Tlen(qu)

e: the embedding layer



Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions

Training data

£@

hhhhhhhhhhhhhh

Concept store ()

Retrieve K influential
concepts for an input x

e: the embedding layer

Classification

K
g = Z Wik
k=1

" {q}1ng - {ahx .
d(x,Q) = *q lc = softmax(W,g(qx) + by)
xlllgll
_ Tweq, eW) 1€ 0Q
7 Tlen(ai)



Global interpretability layer (GIL)

Interpret each data sample x by providing a set of K concepts from the training data which
most influence the model’s predictions

Training data . N Concept store () Retrieve K influential

oo . Classification
w concepts for an input x

(1) A X
X
\ dx = 2 Wil
x?) ” {q}l:NQ - Ak 7 k=1
d(x,Q) = —”;”'”ZI o Lo = softmax(Kg(a) + b
GIL parameters
_ Tweq ew) q€Q
T~ Tlen(an)

e: the embedding layer
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Training

Log-likelihood loss Ly

|

ly = Softmax(Wyg(uS) + by)

|

Classification layer

|

Encoder

(e.g., ROBERTa, XLNet)

|

X



Training

Log-likelihood loss £} Log-likelihood loss Ly

|

ly = Softmax(Wyg(uS) + by)

LIL I

Local concepts {ntj}l:] Classification layer
Label distributions {Sj}l_] ]

L = 2jjsWsjX 5]

' Encoder

(e.g., ROBERTa, XLNet)

|

X



Training

Log-likelihood loss £} Log-likelihood loss Ly

|

ly = Softmax(Wyg(uS) + by)

LIL I

Local concepts {ntj}l:] Classification layer

Label distributions {Sj}l_] ]

L = 2jjsWsjX 5]

' Encoder

Log-likelihood loss L.

GIL

Retrieved global concepts {g};.x

K
g = 2 Wik
k=1

lg = SOftmax(Wug(QK) + bu)
*

(e.g., ROBERTa, XLNet)

|

X



Trainin
S L=als+BL, + Ly

Log-likelihood loss £L; Log-likelihood loss Ly Log-likelihood loss Lg

|

ly = Softmax(Wyg(uS) + by)

LIL I GIL
Local concepts {ntf}1:] Classification layer Retriev%d global concepts {q}1.x
Label distributions {Sj}l:] ] " 2 Wi

k=1

[, = ZJ'»J'?#S WsjX S; lg = softmax(W,g(qk) + by)
Encoder

t t
(e.g., ROBERTa, XLNet)

|

X




Interpretation: local relevant concepts

Training
L=als;+ L + Ly and global influential concepts
Log-likelihood loss £L; Log-likelihood loss Ly Log-likelihood loss Lg
ly = Softmax(Wyg(uS) + by)

LIL I GIL

Local concepts {ntf}1-1 Classification layer Retriev?(d global concepts {q}; .
Label distributions {Sj}l_] I " 2 Wi

k=1

[, = ZJ'»J'?‘tS WsjX S; lg = softmax(W,g(qk) + by)
Encoder

t t
(e.g., ROBERTa, XLNet)

|

X
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SELFEXPLAIN

predicted sentiment: positive

Input CThe fantastic actors elevated the movue}

Word N— ——
ITNEAR The fantastic actors elevated the movie
Attributions | '
Top relevant Influential training
Self- concepts concepts

Explain fantastic actors (0.7) fabulous acting (0.4)
elevated (0.1).. stunning (0.2) ..
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Experiments

Classification performance

Comparable performance to base models across 5 text classification tasks

Model SST-2 SST-5 TREC-6 TREC-50 SUBJ

XL Net 03.4 53.8 06.6 82.8 06.2
SELFEXPLAIN-XLNet (K=5) 04.6 55.2 06.4 83.0 96.4
SELFEXPLAIN-XLNet (K=10) 04.4 5.2 06.4 82.8 06.4
RoBERTa 04.8 535 97.0 89.0 096.2
SELFEXPLAIN-ROBERTa (K=5) 95.1 54.3 97.6 894 096.3
SELFEXPLAIN-ROBERTa (K=10) 95.1 54.1 07.6 89.2 06.3




Explanation evaluation (local relevant concepts, global influential concepts)

» Sufficiency — Do explanations sufficiently reflect the model predictions?
* Plausibility — Do explanations appear plausible and understandable to humans?

* Trustability — Do explanations improve human trust in model predictions?



Experiments

Explanation evaluation (local relevant concepts, global influential concepts)

Sufficiency — Do explanations sufficiently reflect the model predictions?

explanations ——| Model Label ? An explanation that achieves high
' accuracy using this classifier is

indicative of its ability to recover
the original model prediction

70



Experiments

Explanation evaluation (local relevant concepts, global influential concepts)

Sufficiency — Do explanations sufficiently reflect the model predictions?

explanations ——| Model Label ? An explanation that achieves high
' accuracy using this classifier is

indicative of its ability to recover
the original model prediction

Model Explanation Accuracy
Full input text - 0.90
contiguous 0.71

Leietal. (2016)

e i Baselines: attention/gradient-based explanations

Bastines et al. (2019) contiguous 0.60

Bt top-K tokens 0.59

Li et al. (2016) EPRIBONS: 0.70 v' Both LIL and GIL explanations show high predictive performance
top-K tokens 0.68
contiguous 0.8 ° _

(CLS] Attn COISTONS: 1 v" GIL explanations outperform full-text performance
top-K tokens 0.81

SELFEXPLAIN-LIL top-K concepts 0.84

SELFEXPLAIN-GIL  top-K concepts 0.93 -




Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility — Do explanations appear plausible and understandable to humans?

Trustability — Do explanations improve human trust in model predictions?

Adequate justification
Asking human judges: “Does the explanation adequately justifies the model prediction?”

Gold label Prediction label

NS
Qo

Input —— L) <« Explanations

72



Experiments

Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility — Do explanations appear plausible and understandable to humans?

Trustability — Do explanations improve human trust in model predictions?

Adequate justification
Asking human judges: “Does the explanation adequately justifies the model prediction?”

60 56.7

~
[¢)]

Gold label Prediction label

N

Input ——— Ei% <—— Explanations
0

m Influence o Saliency SelfExplain
Function Map

24.8

Percentage of Samples
w
(@]

-k
[¢)]

Adequate
Justification



Experiments

Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility — Do explanations appear plausible and understandable to humans?

Trustability — Do explanations improve human trust in model predictions?

Understandability
Asking human judges to select the explanations that they perceived to be more understandable

60 56.7
52.3

i
(&)}

Gold label Prediction label

N

Input ——— é% <—— Explanations
0

24.8

Percentage of Samples
w
o

b
)]

Adequate Understandability
Justification

Influence Saliency SelfExplain
o Function O Map 74



Experiments

Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility — Do explanations appear plausible and understandable to humans?

Trustability — Do explanations improve human trust in model predictions?

Trustability
Mean trust score: asking human judges to rate on a scale of 1-5 based on how much

trust each of the model explanations instill

3 341
2.74

Prediction label Explanations

\éi%/

n

Mean Trust Score
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Does SELFEXPLAIN’s explanation help predict model behavior?

Asking human judges to predict the model decision with and without the
presence of model explanations

v" When users were presented with the explanation, their ability
to predict model decision improved by an average of 22%
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Analysis

Global interpretations seem more reasonable

Sample Pc Top relevant phrases from LIL  Top influential concepts from GIL
the iditarod lasts for days - PURR Wy 1a8 exploitation piece,
this just felt like it did . & y heart attack
corny, schmaltzy and predictable, but still cguape ik successfully blended satire,
manages to be kind of heart warming, nonetheless. OSSO e, e e spell binding fun
suffers from the lack of a A L T empty theatres,
compelling or comprehensible narrative . g P : tumble weed
the structure the film takes may find matt damon
and ben affleck once again looking for residuals bravo,
pos the structure of the film

as this officially completes a
good will hunting trilogy that was never planned .

meaning and consolation
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Analysis

Global interpretations are more stable to input perturbations

Input Top LIL interpretations Top GIL interpretations

it 's a very charming often affecting, scenes of cinematic perfection that steal your heart away,
and often affecting journey very charming submerged, that extravagantly

it " s a charming and often  of people, scenes of cinematic perfection that steal your heart away,

affecting journey of people charming and often affecting submerged, that extravagantly
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Question?
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