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Building Interpretable Neural Network Models
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What is the difference?  

Explaining a model from the post-hoc manner Improving a model’s intrinsic interpretability

Model Model

freeze
train

• Inference stage • Training stage
• Explain model predictions
• No change on model 

decision making

• Make model prediction 
behavior more interpretable

• No (or minor) change on model 
architecture

Building Interpretable Neural Network Models

Model
Self-interpretable
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What is the difference?  

Explaining a model from the post-hoc manner Improving a model’s intrinsic interpretability

Model Model

freeze
train

• Inference stage • Training stage
• Explain model predictions
• No change on model 

decision making

• Make model prediction 
behavior more interpretable

• No (or minor) change on model 
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Building Interpretable Neural Network Models

Model
Self-interpretable

GAM
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What is the difference?  

Explaining a model from the post-hoc manner Improving a model’s intrinsic interpretability

Model Model

freeze
train

• Inference stage • Training stage
• Explain model predictions
• No change on model 

decision making

• Make model prediction 
behavior more interpretable

• No (or minor) change on model 
architecture

Building Interpretable Neural Network Models

Model
Self-interpretable ü Comparable or better performance 

to traditional neural networks
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Building Interpretable Neural Networks

• Self-explaining models

• SELFEXPLAIN
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Towards Robust Interpretability

with Self-Explaining Neural Networks

David Alvarez-Melis, Tommi S. Jaakkola

(NeurIPS, 2018)
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Goal

Building complex self-explaining models

• Providing human-interpretable explanations

• Maintaining competitive performance
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Interpretability: linear and beyond
Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!
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Interpretability: linear and beyond

Generalized coefficients
𝑓 𝑥 = 𝜃 𝑥 %𝑥

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

𝜃 ∈ Θ (a complex model class)

As powerful as any 
deep neural network, 
but not interpretable
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Interpretability: linear and beyond

Generalized coefficients
𝑓 𝑥 = 𝜃 𝑥 %𝑥

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

𝜃 ∈ Θ (a complex model class)

Local interpretability

𝑥 ≈ 𝑥′ 𝜃 𝑥 ≈ 𝜃 𝑥′
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Interpretability: linear and beyond

Generalized coefficients
𝑓 𝑥 = 𝜃 𝑥 %𝑥

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

𝜃 ∈ Θ (a complex model class)

Local interpretability

𝑥 ≈ 𝑥′ 𝜃 𝑥 ≈ 𝜃 𝑥′

∇&𝑓 𝑥 ≈ 𝜃 𝑥' 𝑥'

𝑥

The stable coefficients 
𝜃 𝑥' ! indicate feature 

importance in the local area
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Interpretability: linear and beyond

Beyond raw features – feature basis

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ( (𝑘 is small for interpretation)
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Interpretability: linear and beyond

Beyond raw features – feature basis

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ( (𝑘 is small for interpretation)

• subset aggregates of the input (e.g., ℎ 𝑥 = 𝐴𝑥, 𝐴 is a boolean mask matrix)

• predefined, pre-grounded feature extractors designed with expert knowledge (e.g., 
filters for image processing)

• prototype based concepts
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Interpretability: linear and beyond

Beyond raw features – feature basis

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ( (𝑘 is small for interpretation)

𝑓 𝑥 = 𝜃 𝑥 %ℎ 𝑥 =$
!"#

(

𝜃 𝑥 !ℎ 𝑥 !

Concept importance
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Interpretability: linear and beyond

Further generalization

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

∑⟶ 𝑔 𝑧#, ⋯ , 𝑧( (a general aggregation function)

𝑓 𝑥 = 𝜃 𝑥 %ℎ 𝑥 =$
!"#

(

𝜃 𝑥 !ℎ 𝑥 !
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Interpretability: linear and beyond

Further generalization

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

∑⟶ 𝑔 𝑧#, ⋯ , 𝑧( (a general aggregation function)

𝑓 𝑥 = 𝜃 𝑥 %ℎ 𝑥 =$
!"#

(

𝜃 𝑥 !ℎ 𝑥 !

• be permutation invariant

• isolate the effect of individual ℎ 𝑥 ! in the output

• preserve the sign and relative magnitude of the 
impact of the relevance values 𝜃 𝑥 !
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Interpretability: linear and beyond

Self-explaining models

Linear regression

𝑓 𝑥 =$
!"#

$

𝜃!𝑥! Feature contribution 𝜃!

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

𝜃 ∈ Θ: a complex model

𝑔 : : aggregation function

ℎ 𝑥 : basis concepts
𝜃 acts as coefficients of a 
linear model on the basis 
concepts ℎ 𝑥

(conditional bounding 𝜃 𝑥 − 𝜃 𝑦 with 𝐿 ℎ 𝑥 − ℎ 𝑦 )
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Question?
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

For every 𝑥!, there exist 𝛿 > 0
and 𝐿 ∈ ℝ such that 𝑥 − 𝑥! <
𝛿 implies 𝜃 𝑥 − 𝜃 𝑥! ≤
𝐿 ℎ 𝑥 − ℎ 𝑥!

𝑥'

𝑥
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores



21

Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

ℎ : is a trivial input 
feature indicator, while the 
modeling capacity comes 
from 𝜃 : (e.g., DNNs)
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

∑𝑧! or ∑𝐴!𝑧! (𝐴! > 0)
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

Application-dependent
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

𝜃 𝑥' ≈ ∇+𝑓

𝑧 = ℎ 𝑥 (around 𝑥')
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

(Jacobian)

𝜃 𝑥' ≈ ∇+𝑓

𝑧 = ℎ 𝑥 (around 𝑥')

∇&𝑓 = ∇+𝑓𝐽&- (chain rule)
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

𝜃 𝑥' ≈ ∇+𝑓

𝑧 = ℎ 𝑥 (around 𝑥')

∇&𝑓 = ∇+𝑓𝐽&- (chain rule)

𝜃 𝑥 %𝐽&- ≈ ∇&𝑓

ℒ. 𝑓(𝑥) = ∇&𝑓(𝑥) − 𝜃 𝑥 %𝐽&-(𝑥) ≈ 0
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Self-explaining models

𝑓 𝑥 = 𝑔 𝜃# 𝑥 ℎ# 𝑥 ,⋯ , 𝜃( 𝑥 ℎ( 𝑥

• 𝑔: monotone and completely additively separable

• For every 𝑧! = 𝜃! 𝑥 ℎ! 𝑥 , 𝑔 satisfies )*
)+!

≥ 0

• 𝜃 is locally difference bounded by ℎ

• ℎ 𝑥 is an interpretable representation of 𝑥

• 𝑘 is small

The explanation of 𝑓 𝑥 is the set ℇ, 𝑥 = ℎ! 𝑥 , 𝜃! 𝑥 !"#
(

of basis concepts 
and their influence scores

𝜃 𝑥' ≈ ∇+𝑓

𝑧 = ℎ 𝑥 (around 𝑥')

∇&𝑓 = ∇+𝑓𝐽&- (chain rule)

𝜃 𝑥 %𝐽&- ≈ ∇&𝑓

ℒ. 𝑓(𝑥) = ∇&𝑓(𝑥) − 𝜃 𝑥 %𝐽&-(𝑥) ≈ 0

Objective

ℒ/ 𝑓 𝑥 , 𝑦 + 𝜆ℒ. 𝑓(𝑥)
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Question?



29

Learning interpretable basis concepts

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ(

single pixels → textures, shapes

single words → phrases

Ideally, the basis concepts 
would be informed by expert 
knowledge (e.g., doctor-
provided features)
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Learning interpretable basis concepts

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ(c

single pixels → textures, shapes

single words → phrases

Learning 𝒉

• training ℎ as an autoencoder
• enforcing diversity through sparsity (few non-

overlapping concepts)
• providing interpretation on the concepts by 

prototyping (e.g., by providing a small set of training 
examples that maximally activate each concept)

ℒ- 𝑥, I𝑥

I𝑥 = ℎ012(ℎ(𝑥))
(reconstruction)



31

Learning interpretable basis concepts

ℎ 𝑥 : 𝒳 → 𝒵 ⊂ ℝ(c

single pixels → textures, shapes

single words → phrases

Learning 𝒉

• training ℎ as an autoencoder
• enforcing diversity through sparsity (few non-

overlapping concepts)
• providing interpretation on the concepts by 

prototyping (e.g., by providing a small set of training 
examples that maximally activate each concept)

ℒ- 𝑥, I𝑥

I𝑥 = ℎ012(ℎ(𝑥))

Objective
ℒ/ 𝑓 𝑥 , 𝑦 + 𝜆ℒ. 𝑓(𝑥) + 𝛾ℒ- 𝑥, I𝑥
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Learning interpretable basis concepts

Objective
ℒ/ 𝑓 𝑥 , 𝑦 + 𝜆ℒ. 𝑓(𝑥) + 𝛾ℒ- 𝑥, I𝑥



33

Architectures

• CL: convolutional layers

• FC: fully-connected layers

Prediction performance is 
comparable to baseline NNs
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Question?
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Experiments

• Explicitness/Intelligibility: Are the explanations immediate and understandable?

• Faithfulness: Are relevance scores indicative of "true" importance?

• Stability: How consistent are the explanations for similar/neighboring examples?
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Experiments

Explicitness/Intelligibility: Are the explanations immediate and understandable?

• The concepts are maximally activated by a set of training examples

• Concept 3 has a strong positive influence towards both prediction

• Concept 4 is also highly relevant to “2”
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Experiments

• Explicitness/Intelligibility: Are the explanations immediate and understandable?

• Faithfulness: Are relevance scores indicative of "true" importance?

• Stability: How consistent are the explanations for similar/neighboring examples?
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Experiments

Faithfulness: Are relevance scores indicative of "true" importance?

• Faithfulness: computing the correlations of probability drops (removing features) and relevance scores

ℎ(𝑥) is identity ℎ(𝑥) is learnt

• Overall SENN (self-explaining neural networks) can provide faithful interpretations
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Experiments

• Explicitness/Intelligibility: Are the explanations immediate and understandable?

• Faithfulness: Are relevance scores indicative of "true" importance?

• Stability: How consistent are the explanations for similar/neighboring examples?
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Experiments

Stability: How consistent are the explanations for similar/neighboring examples?

• Existing interpretation methods are not robust to small perturbations
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Discussion

• Providing insights on designing self-explaining neural network models

• Model architectures are selected empirically (requiring engineering effort)

• It is still challenging to develop interpretable models in more complex 
domains (e.g., larger image datasets, NLP tasks) 
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Building Interpretable Neural Networks

• Self-explaining models

• SELFEXPLAIN
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SELFEXPLAIN: A Self-Explaining Architecture for 

Neural Text Classifiers

Dheeraj Rajagopal, Vidhisha Balachandran, 
Eduard Hovy, Yulia Tsvetkov

(EMNLP, 2021)

SELFEXPLAIN
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SELFEXPLAIN

• High-level phrase-based concepts

Identifying local feature attributions in the input

Explaining model decisions as a function of influential training data

• Local interpretable layer (LIL)

• Global interpretable layer (GIL)
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• Local interpretable layer (LIL)

SELFEXPLAIN

• Global interpretable layer (GIL)

• High-level phrase-based concepts

Identifying local feature attributions in the input

Explaining model decisions as a function of influential training data

ℳ: a neural C-class classification model

SELFEXPLAIN builds into ℳ and provides a set of explanations 𝑍
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SELFEXPLAIN
Defining human-interpretable concepts (phrases)

Extract phrases via syntax trees

John hit the ball

D N

NPV

VPN

S

S: sentence
NP: noun phrase
VP: verb phrase
V: verb
D: determiner
N: noun

𝑥 = 𝑤! #:%

Input

𝑁 𝑥 = 𝑛𝑡4 #:5

Component non-terminals

(the ball)

(hit the ball)
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SELFEXPLAIN
Concept-aware encoder E

Encoder

(e.g., RoBERTa)

𝑤#

𝑤%
⋮

ℎ#

ℎ%
⋮

𝑥 = 𝑤! #:%

Input

𝑁 𝑥 = 𝑛𝑡4 #:5

Component non-terminals

The representation of  non-terminal 𝑛𝑡4

𝑢4 =
∑6!∈$8" ℎ!
𝑙𝑒𝑛(𝑛𝑡4)

𝑢"
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SELFEXPLAIN
Concept-aware encoder E

Encoder

(e.g., RoBERTa)

𝑤#

𝑤%
⋮

ℎ#

ℎ%
⋮

𝑥 = 𝑤! #:%

Input

𝑁 𝑥 = 𝑛𝑡4 #:5

Component non-terminals

The representation of  non-terminal 𝑛𝑡4

𝑢4 =
∑6!∈$8" ℎ!
𝑙𝑒𝑛(𝑛𝑡4)

𝑢"
𝑢9 is the pooled representation 
([CLS] token representation)
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SELFEXPLAIN
Concept-aware encoder E

Encoder

(e.g., RoBERTa)

𝑤#

𝑤%
⋮

ℎ#

ℎ%
⋮

𝑥 = 𝑤! #:%

Input

𝑁 𝑥 = 𝑛𝑡4 #:5

Component non-terminals

The representation of  non-terminal 𝑛𝑡4

𝑢4 =
∑6!∈$8" ℎ!
𝑙𝑒𝑛(𝑛𝑡4)

𝑢" The output of the classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/
𝑃; = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙:

𝑔 : : 𝑟𝑒𝑙𝑢 activation layer
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Question?
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SELFEXPLAIN
Local interpretability layer (LIL)

Compute the local relevance score for all input concepts 𝑛𝑡4 #:5
from the sample 𝑥

Activation difference: quantifies the contribution of each 𝑛𝑡4 to the label in comparison 
to the contribution of the root node 𝑛𝑡9

𝑢"

𝑢#
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SELFEXPLAIN
Local interpretability layer (LIL)

Compute the local relevance score for all input concepts 𝑛𝑡4 #:5
from the sample 𝑥

Activation difference: quantifies the contribution of each 𝑛𝑡4 to the label in comparison 
to the contribution of the root node 𝑛𝑡9

𝑢"

𝑢# 𝑡4 = 𝑔(𝑢4) − 𝑔(𝑢9)

𝑠4 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊<𝑡4 + 𝑏<

𝑟𝑒𝑙𝑢 activation function 

LIL parameters

The relevance score of 𝑛𝑡4

𝑟4 = 𝑙: !|!"=# − 𝑠4 !
|!"=#

Original prediction 
probabilities

Predicted label
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Question?
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions

Training data

𝑥(#)

𝑥(@)

⋮

Concept store 𝑄

𝑞 #:A$

⋮

𝑞( =
∑6∈B% 𝑒(𝑤)
𝑙𝑒𝑛(𝑞()

𝑒: the embedding layer
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions

Training data

𝑥(#)

𝑥(@)

⋮

Concept store 𝑄

𝑞 #:A$

⋮

𝑞( =
∑6∈B% 𝑒(𝑤)
𝑙𝑒𝑛(𝑞()

𝑒: the embedding layer

Retrieve 𝐾 influential 
concepts for an input 𝑥

𝑞 #:C

𝑑 𝑥, 𝑄 =
𝑥 : 𝑞
𝑥 𝑞

𝑞 ∈ 𝑄
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions

Training data

𝑥(#)

𝑥(@)

⋮

Concept store 𝑄

𝑞 #:A$

⋮

𝑞( =
∑6∈B% 𝑒(𝑤)
𝑙𝑒𝑛(𝑞()

𝑒: the embedding layer

Retrieve 𝐾 influential 
concepts for an input 𝑥

𝑞 #:C

𝑑 𝑥, 𝑄 =
𝑥 : 𝑞
𝑥 𝑞

𝑞 ∈ 𝑄

Maximum Inner 
Product Search

𝑝 𝑞|𝑥 =
exp(𝑑 𝑢9, 𝑞 )

∑BD exp(𝑑 𝑢9, 𝑞′ )
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions

Training data

𝑥(#)

𝑥(@)

⋮

Concept store 𝑄

𝑞 #:A$

⋮

𝑞( =
∑6∈B% 𝑒(𝑤)
𝑙𝑒𝑛(𝑞()

𝑒: the embedding layer

Retrieve 𝐾 influential 
concepts for an input 𝑥

𝑞 #:C

𝑑 𝑥, 𝑄 =
𝑥 : 𝑞
𝑥 𝑞

𝑞 ∈ 𝑄

Classification

𝑙$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊%𝑔 𝑞& + 𝑏%

𝑞& = H
'()

&

𝑤'𝑞'
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SELFEXPLAIN
Global interpretability layer (GIL)

Interpret each data sample 𝑥 by providing a set of 𝐾 concepts from the training data which 
most influence the model’s predictions

Training data

𝑥(#)

𝑥(@)

⋮

Concept store 𝑄

𝑞 #:A$

⋮

𝑞( =
∑6∈B% 𝑒(𝑤)
𝑙𝑒𝑛(𝑞()

𝑒: the embedding layer

Retrieve 𝐾 influential 
concepts for an input 𝑥

𝑞 #:C

𝑑 𝑥, 𝑄 =
𝑥 : 𝑞
𝑥 𝑞

𝑞 ∈ 𝑄

Classification

𝑙$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊%𝑔 𝑞& + 𝑏%

𝑞& = H
'()

&

𝑤'𝑞'

GIL parameters
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Question?
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SELFEXPLAIN
Training

Encoder

(e.g., RoBERTa, XLNet)

𝑥

Classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/

Log-likelihood loss ℒ:
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SELFEXPLAIN
Training

Encoder

(e.g., RoBERTa, XLNet)

𝑥

Classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/

Log-likelihood loss ℒ:

LIL
Local concepts 𝑛𝑡" ):+

Label distributions 𝑠" ):+

𝑙, = ∑",".#𝑤/"× 𝑠"

Log-likelihood loss ℒE
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SELFEXPLAIN
Training

GIL
Retrieved global concepts 𝑞 ):&

Encoder

(e.g., RoBERTa, XLNet)

𝑥

Classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/

Log-likelihood loss ℒ:

LIL
Local concepts 𝑛𝑡" ):+

Label distributions 𝑠" ):+

𝑙, = ∑",".#𝑤/"× 𝑠"

Log-likelihood loss ℒE

𝑞& = H
'()

&

𝑤'𝑞'

𝑙$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊%𝑔 𝑞& + 𝑏%

Log-likelihood loss ℒF
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SELFEXPLAIN
Training

GIL
Retrieved global concepts 𝑞 ):&

Encoder

(e.g., RoBERTa, XLNet)

𝑥

Classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/

Log-likelihood loss ℒ:

LIL
Local concepts 𝑛𝑡" ):+

Label distributions 𝑠" ):+

𝑙, = ∑",".#𝑤/"× 𝑠"

Log-likelihood loss ℒE

𝑞& = H
'()

&

𝑤'𝑞'

𝑙$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊%𝑔 𝑞& + 𝑏%

Log-likelihood loss ℒF

ℒ = 𝛼ℒF + 𝛽ℒE + ℒ:
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SELFEXPLAIN
Training

GIL
Retrieved global concepts 𝑞 ):&

Encoder

(e.g., RoBERTa, XLNet)

𝑥

Classification layer

𝑙: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊/𝑔 𝑢9 + 𝑏/

Log-likelihood loss ℒ:

LIL
Local concepts 𝑛𝑡" ):+

Label distributions 𝑠" ):+

𝑙, = ∑",".#𝑤/"× 𝑠"

Log-likelihood loss ℒE

𝑞& = H
'()

&

𝑤'𝑞'

𝑙$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊%𝑔 𝑞& + 𝑏%

Log-likelihood loss ℒF

ℒ = 𝛼ℒF + 𝛽ℒE + ℒ:
Interpretation: local relevant concepts 
and global influential concepts
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SELFEXPLAIN
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Question?
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Experiments
Classification performance

Comparable performance to base models across 5 text classification tasks
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Experiments
Explanation evaluation

• Sufficiency – Do explanations sufficiently reflect the model predictions?

• Plausibility – Do explanations appear plausible and understandable to humans?

• Trustability – Do explanations improve human trust in model predictions?

(local relevant concepts, global influential concepts)
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Experiments
Explanation evaluation

Sufficiency – Do explanations sufficiently reflect the model predictions?

(local relevant concepts, global influential concepts)

explanations Model Label ? An explanation that achieves high 
accuracy using this classifier is 
indicative of its ability to recover 
the original model prediction
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Experiments
Explanation evaluation

Sufficiency – Do explanations sufficiently reflect the model predictions?

(local relevant concepts, global influential concepts)

explanations Model Label ? An explanation that achieves high 
accuracy using this classifier is 
indicative of its ability to recover 
the original model prediction

ü Both LIL and GIL explanations show high predictive performance

ü GIL explanations outperform full-text performance

Baselines: attention/gradient-based explanations
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Experiments
Explanation evaluation

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

(local relevant concepts, global influential concepts)

Adequate justification
Asking human judges: “Does the explanation adequately justifies the model prediction?”

Input

Gold label Prediction label

Explanations
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Experiments
Explanation evaluation

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

(local relevant concepts, global influential concepts)

Adequate justification
Asking human judges: “Does the explanation adequately justifies the model prediction?”

Input

Gold label Prediction label

Explanations
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Experiments
Explanation evaluation

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

(local relevant concepts, global influential concepts)

Understandability
Asking human judges to select the explanations that they perceived to be more understandable

Input

Gold label Prediction label

Explanations
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Experiments
Explanation evaluation

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

(local relevant concepts, global influential concepts)

Trustability
Mean trust score: asking human judges to rate on a scale of 1–5 based on how much
trust each of the model explanations instill

Prediction label Explanations
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Analysis
Does SELFEXPLAIN’s explanation help predict model behavior?

ü When users were presented with the explanation, their ability 
to predict model decision improved by an average of 22%

Asking human judges to predict the model decision with and without the 
presence of model explanations
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Analysis

Global interpretations seem more reasonable
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Analysis

Global interpretations are more stable to input perturbations
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Question?
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