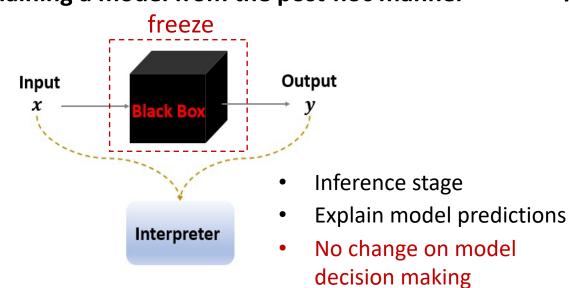


CS 4501/6501 Interpretable Machine Learning

Building Interpretable Neural Network Models

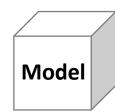
Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

What is the difference?



Explaining a model from the post-hoc manner

Building Interpretable Neural Network Models

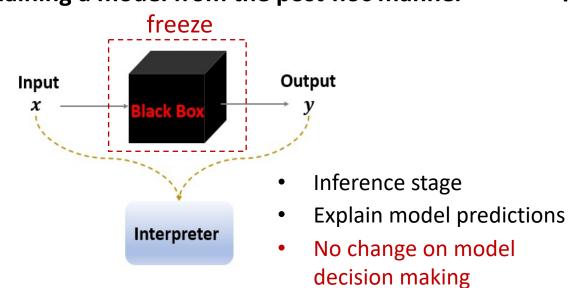


Self-interpretable

Improving a model's intrinsic interpretability

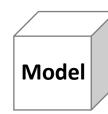
- Training stage
- Make model prediction behavior more interpretable
- No (or minor) change on model architecture

What is the difference?



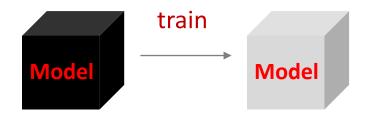
Explaining a model from the post-hoc manner

Building Interpretable Neural Network Models

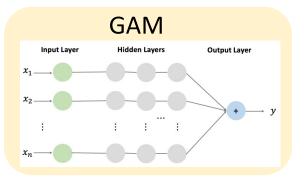


Self-interpretable

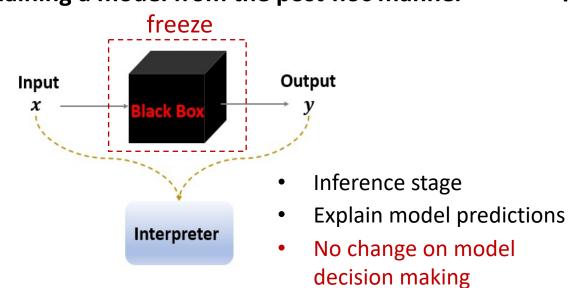
Improving a model's intrinsic interpretability



- Training stage
- Make model prediction behavior more interpretable
- No (or minor) change on model architecture

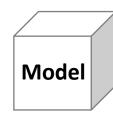


What is the difference?



Explaining a model from the post-hoc manner

Building Interpretable Neural Network Models



Self-interpretable

Improving a model's intrinsic interpretability

- Training stage
- Make model prediction behavior more interpretable
- No (or minor) change on model architecture

 Comparable or better performance to traditional neural networks

Building Interpretable Neural Networks

• Self-explaining models

• SELFEXPLAIN

Towards Robust Interpretability with Self-Explaining Neural Networks

David Alvarez-Melis, Tommi S. Jaakkola

(NeurIPS, 2018)

Goal

Building complex self-explaining models

- Providing human-interpretable explanations
- Maintaining competitive performance

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Generalized coefficients

$$f(x) = \theta(x)^T x$$
 $\theta \in \Theta$ (a complex model class)

As powerful as any deep neural network, but not interpretable

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Generalized coefficients

$$f(x) = \theta(x)^T x$$
 $\theta \in \Theta$ (a complex model class)

Local interpretability

$$x \approx x'$$
 $\theta(x) \approx \theta(x')$

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Generalized coefficients

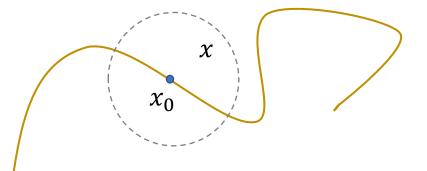
$$f(x) = \theta(x)^T x$$
 $\theta \in \Theta$ (a complex model class

Local interpretability

$$x \approx x'$$
 $\theta(x) \approx \theta(x')$

 $\nabla_x f(x) \approx \theta(x_0)$

The stable coefficients $\{\theta(x_0)_i\}$ indicate feature importance in the local area



Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Beyond raw features – feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

 $h(x): \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k$ (k is small for interpretation)

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Beyond raw features – feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

 $h(x): \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k$ (k is small for interpretation)

- subset aggregates of the input (e.g., h(x) = Ax, A is a boolean mask matrix)
- predefined, pre-grounded feature extractors designed with expert knowledge (e.g., filters for image processing)
- prototype based concepts

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Beyond raw features – feature basis

Interpretable basis concepts: higher order features (e.g., a patch of pixels)

$$h(x): \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k$$
 (k is small for interpretation)
 $f(x) = \theta(x)^T h(x) = \sum_{i=1}^k \frac{\theta(x)_i}{h(x)_i}$

Concept importance

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Further generalization

$$f(x) = \theta(x)^T h(x) = \sum_{i=1}^k \theta(x)_i h(x)_i$$

 $\Sigma \rightarrow g(z_1, \cdots, z_k)$ (a general aggregation function)

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Further generalization

$$f(x) = \theta(x)^T h(x) = \sum_{i=1}^k \theta(x)_i h(x)_i$$

 $\Sigma \longrightarrow g(z_1, \cdots, z_k)$ (a general aggregation function)

- be permutation invariant
- isolate the effect of individual $h(x)_i$ in the output
- preserve the sign and relative magnitude of the impact of the relevance values $\theta(x)_i$

Linear regression

$$f(x) = \sum_{i=1}^{n} \theta_i x_i$$

Feature contribution $\{\theta_i\}$

Self-explaining models

$$f(x) = g\big(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x)\big)$$

 $g(\cdot)$: aggregation function

h(x): basis concepts

 θ acts as coefficients of a linear model on the basis concepts h(x)

 $\theta \in \Theta$: a complex model

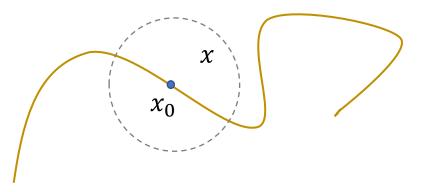
(conditional bounding $\|\theta(x) - \theta(y)\|$ with $L\|h(x) - h(y)\|$)

Question?

 $f(x) = g\big(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x)\big)$

- g: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$
- θ is locally difference bounded by h
- h(x) is an interpretable representation of x
- k is small

For every x_0 , there exist $\delta > 0$ and $L \in \mathbb{R}$ such that $||x - x_0|| < \delta$ implies $||\theta(x) - \theta(x_0)|| \le L||h(x) - h(x_0)||$



$$f(x) = g(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x))$$

- *g*: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$
- θ is locally difference bounded by h
- h(x) is an interpretable representation of x
- k is small

 $f(x) = g(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x))$

- g: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$
- θ is locally difference bounded by h
- h(x) is an interpretable representation of x

 $h(\cdot)$ is a trivial input feature indicator, while the modeling capacity comes from $\theta(\cdot)$ (e.g., DNNs)

• k is small

$$f(x) = g(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x))$$

• g: monotone and completely additively separable

• For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$

- θ is locally difference bounded by h
- h(x) is an interpretable representation of x
- k is small

The explanation of f(x) is the set $\mathcal{E}_f(x) = \{(h_i(x), \theta_i(x))\}_{i=1}^k$ of basis concepts and their influence scores

 $\sum z_i$ or $\sum A_i z_i$ ($A_i > 0$)

$$f(x) = g(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x))$$

• g: monotone and completely additively separable

• For every
$$z_i = \theta_i(x)h_i(x)$$
, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$

• θ is locally difference bounded by h

h(x) is an interpretable representation of x *k* is small

 $f(x) = g(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x))$

• g: monotone and completely additively separable

• For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$ • θ is locally difference bounded by h $\theta(x_0) \approx \nabla_z f$ $z = h(x) \text{ (around } x_0\text{)}$

- h(x) is an interpretable representation of x
- k is small

 $f(x) = g\big(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x)\big)$

- g: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$ • θ is locally difference bounded by h

h(x) is an interpretable representation of x

 $\theta(x_0) \approx \nabla_z f$ $z = h(x) \text{ (around } x_0\text{)}$ $\nabla_x f = \nabla_z f J_x^h \text{ (chain rule)}$

(Jacobian)

• k is small

 $f(x) = g\big(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x)\big)$

- g: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$

• heta is locally difference bounded by h

 $\theta(x_0) \approx \nabla_Z f$

 $\theta(x)^T I_x^h \approx \nabla_x f$

$$x = h(x)$$
 (around x_0)

 $\nabla_x f = \nabla_z f I_x^h$ (chain rule)

- h(x) is an interpretable representation of x
 - k is small

 $\mathcal{L}_{\theta}(f(x)) = \left\| \nabla_{x} f(x) - \theta(x)^{T} J_{x}^{h}(x) \right\| \approx 0$

$$f(x) = g\big(\theta_1(x)h_1(x), \cdots, \theta_k(x)h_k(x)\big)$$

- g: monotone and completely additively separable
- For every $z_i = \theta_i(x)h_i(x)$, g satisfies $\frac{\partial g}{\partial z_i} \ge 0$

• θ is locally difference bounded by h

- h(x) is an interpretable representation of x
- k is small

Objective $\mathcal{L}_{y}(f(x), y) + \lambda \mathcal{L}_{\theta}(f(x))$

 $\theta(x_0) \approx \nabla_z f$ $z = h(x) \text{ (around } x_0)$

 $abla_x f =
abla_z f J_x^h$ (chain rule) $\theta(x)^T J_x^h \approx
abla_x f$

 $\mathcal{L}_{\theta}(f(x)) = \left\| \nabla_{x} f(x) - \theta(x)^{T} J_{x}^{h}(x) \right\| \approx 0$

Question?

 $h(x)\colon \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k$

single pixels \rightarrow textures, shapes

single words \rightarrow phrases

Ideally, the basis concepts would be informed by expert knowledge (e.g., doctorprovided features)

 $h(x): \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k \mathsf{c}$

```
single pixels \rightarrow textures, shapes
```

single words \rightarrow phrases

Learning h

- training *h* as an autoencoder
- enforcing diversity through sparsity (few nonoverlapping concepts)
- providing interpretation on the concepts by prototyping (e.g., by providing a small set of training examples that maximally activate each concept)

 $\mathcal{L}_h(x,\hat{x})$

 $\hat{x} = h_{dec}(h(x))$

(reconstruction)

 $h(x): \mathcal{X} \to \mathcal{Z} \subset \mathbb{R}^k \mathsf{c}$

```
single pixels \rightarrow textures, shapes
```

single words \rightarrow phrases

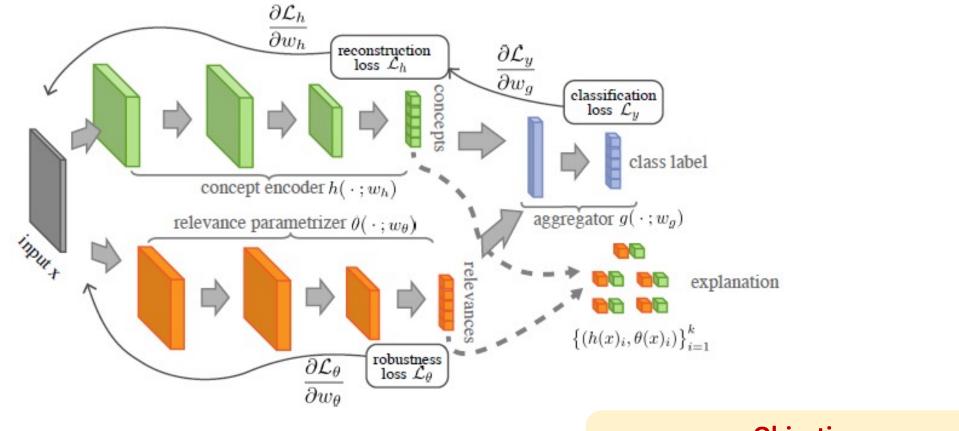
Learning h

- training *h* as an autoencoder
- enforcing diversity through sparsity (few nonoverlapping concepts)
- providing interpretation on the concepts by prototyping (e.g., by providing a small set of training examples that maximally activate each concept)

 $\mathcal{L}_h(x, \hat{x})$

$$\hat{x} = h_{dec}(h(x))$$

Objective $\mathcal{L}_{y}(f(x), y) + \lambda \mathcal{L}_{\theta}(f(x)) + \gamma \mathcal{L}_{h}(x, \hat{x})$



Objective

 $\mathcal{L}_{y}(f(x), y) + \lambda \mathcal{L}_{\theta}(f(x)) + \gamma \mathcal{L}_{h}(x, \hat{x})$

Architectures

- CL: convolutional layers
- FC: fully-connected layers

	COMPAS/UCI	MNIST	CIFAR10
$h(\cdot)$	h(x) = x	$CL(10, 20) \rightarrow FC(c)$	$CL(10, 20) \rightarrow FC(c)$
$rac{ heta(\cdot)}{g(\cdot)}$	FC(10, 5, 5, 1) sum	$CL(10, 20) \rightarrow FC(c \cdot 10)$ sum	$\begin{array}{c} {\rm CL}(2^6,2^7,2^8,2^9,2^9) \rightarrow {\rm FC}(2^8,2^7,c\cdot 10) \\ {\rm sum} \end{array}$

Prediction performance is comparable to baseline NNs

Question?

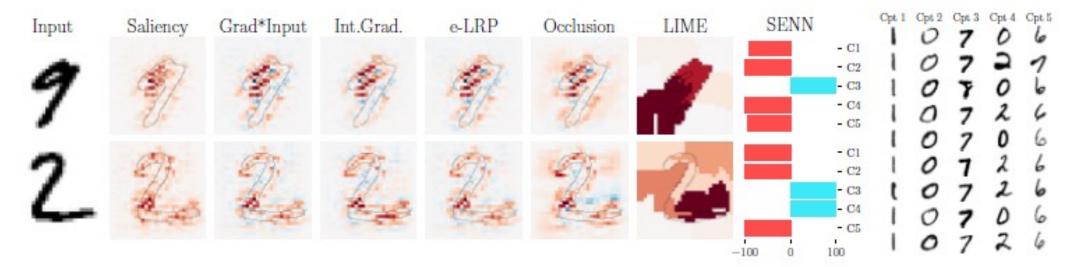
Experiments

- Explicitness/Intelligibility: Are the explanations immediate and understandable?
- Faithfulness: Are relevance scores indicative of "true" importance?
- Stability: How consistent are the explanations for similar/neighboring examples?

Experiments

Explicitness/Intelligibility: Are the explanations immediate and understandable?

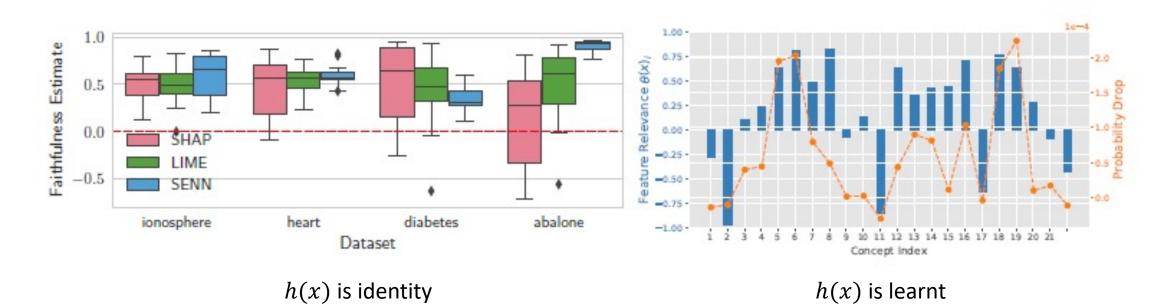
- The concepts are maximally activated by a set of training examples
- Concept 3 has a strong positive influence towards both prediction
- Concept 4 is also highly relevant to "2"



- Explicitness/Intelligibility: Are the explanations immediate and understandable?
- Faithfulness: Are relevance scores indicative of "true" importance?
- Stability: How consistent are the explanations for similar/neighboring examples?

Faithfulness: Are relevance scores indicative of "true" importance?

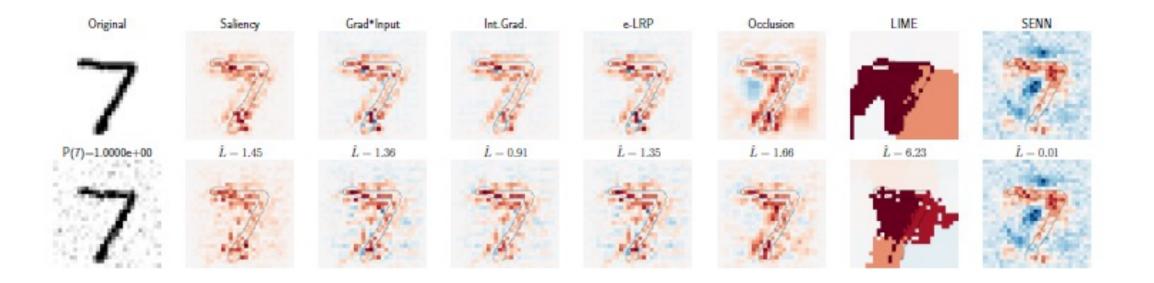
- Faithfulness: computing the correlations of probability drops (removing features) and relevance scores
- Overall SENN (self-explaining neural networks) can provide faithful interpretations



- Explicitness/Intelligibility: Are the explanations immediate and understandable?
- Faithfulness: Are relevance scores indicative of "true" importance?
- Stability: How consistent are the explanations for similar/neighboring examples?

Stability: How consistent are the explanations for similar/neighboring examples?

• Existing interpretation methods are not robust to small perturbations



Discussion

- Providing insights on designing self-explaining neural network models
- Model architectures are selected empirically (requiring engineering effort)
- It is still challenging to develop interpretable models in more complex domains (e.g., larger image datasets, NLP tasks)

Building Interpretable Neural Networks

• Self-explaining models

• SELFEXPLAIN

SELFEXPLAIN: A Self-Explaining Architecture for

Neural Text Classifiers

Dheeraj Rajagopal, Vidhisha Balachandran, Eduard Hovy, Yulia Tsvetkov

(EMNLP, 2021)

Local interpretable layer (LIL)

Identifying local feature attributions in the input

• Global interpretable layer (GIL)

Explaining model decisions as a function of influential training data

• High-level phrase-based concepts

Local interpretable layer (LIL)

Identifying local feature attributions in the input

• Global interpretable layer (GIL)

Explaining model decisions as a function of influential training data

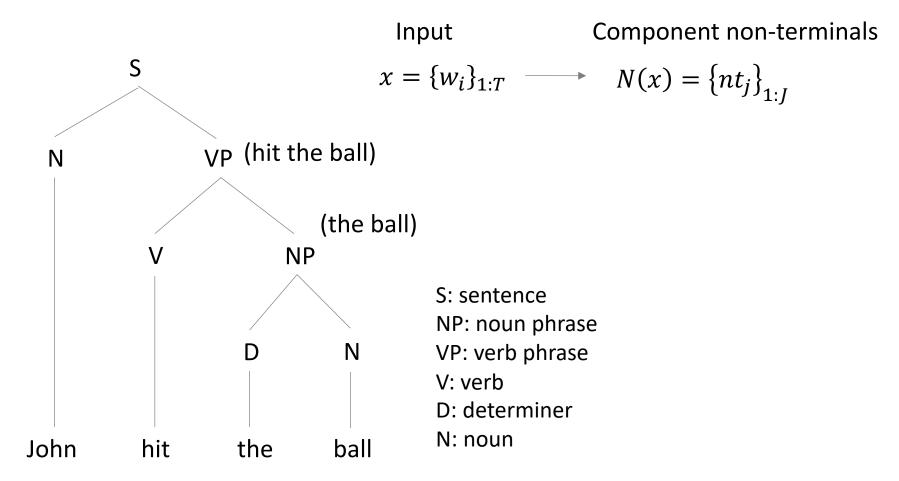
• High-level phrase-based concepts

 \mathcal{M} : a neural C-class classification model

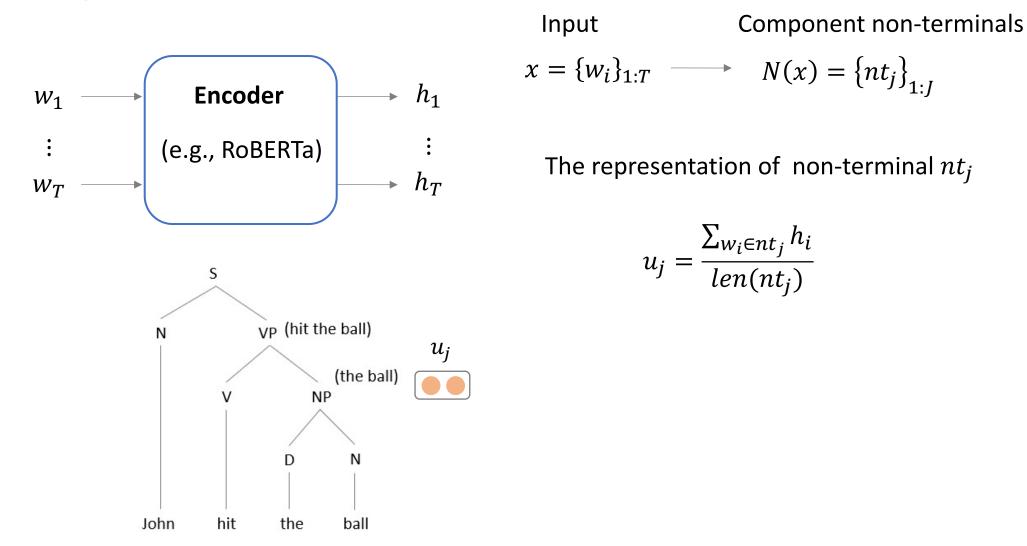
SELFEXPLAIN builds into $\mathcal M$ and provides a set of explanations Z

Defining human-interpretable concepts (phrases)

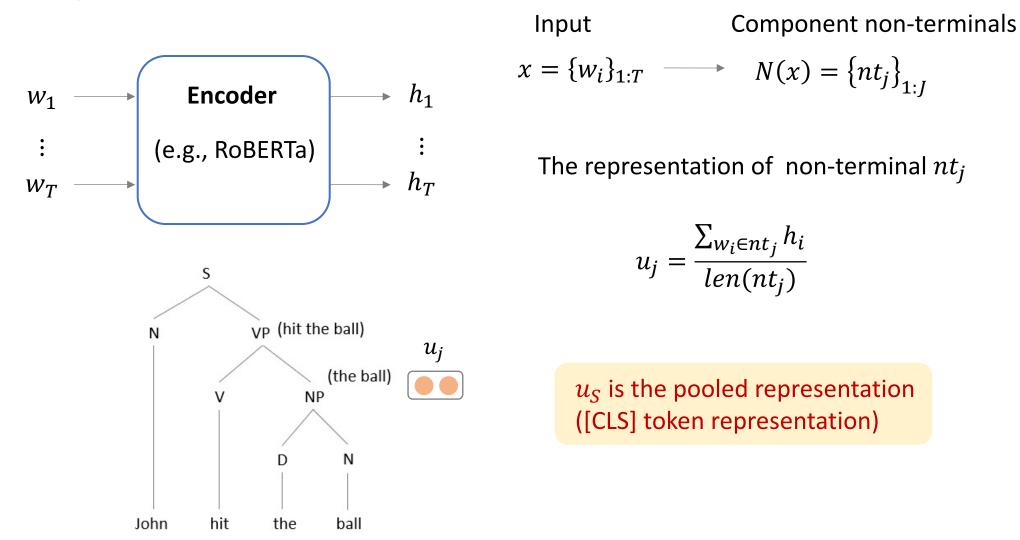
Extract phrases via syntax trees



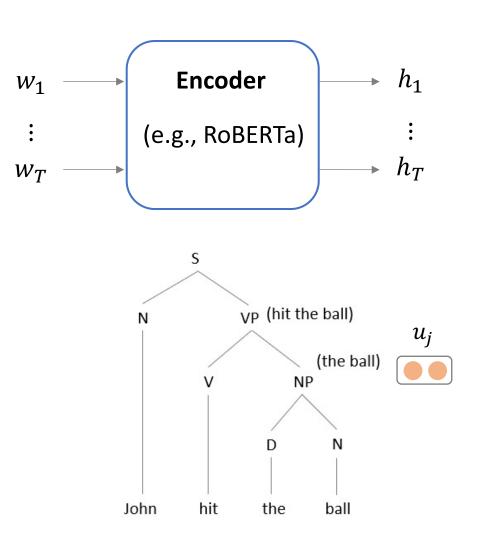
Concept-aware encoder E



Concept-aware encoder E



Concept-aware encoder E



Input Component non-terminals $x = \{w_i\}_{1:T} \longrightarrow N(x) = \{nt_j\}_{1:J}$

The representation of non-terminal nt_i

$$u_j = \frac{\sum_{w_i \in nt_j} h_i}{len(nt_j)}$$

The output of the classification layer

$$l_Y = softmax \big(W_y g(u_S) + b_y \big)$$

 $P_C = argmax(l_Y)$

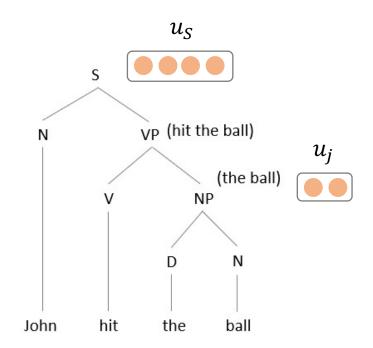
 $g(\cdot)$: relu activation layer

Question?

Local interpretability layer (LIL)

Compute the local relevance score for all input concepts $\{nt_j\}_{1:I}$ from the sample x

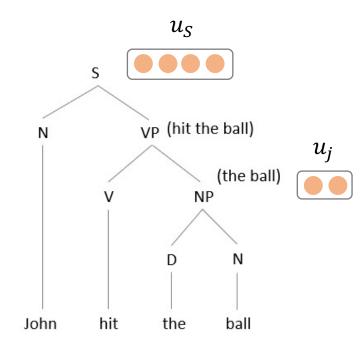
Activation difference: quantifies the contribution of each nt_j to the label in comparison to the contribution of the root node nt_s



Local interpretability layer (LIL)

Compute the local relevance score for all input concepts $\{nt_j\}_{1:I}$ from the sample x

Activation difference: quantifies the contribution of each nt_j to the label in comparison to the contribution of the root node nt_s



 $t_{j} = \underline{g}(u_{j}) - \underline{g}(u_{S}) \quad relu \text{ activation function}$ $s_{j} = softmax(W_{v}t_{j} + b_{v}) \quad \text{LIL parameters}$

The relevance score of nt_j

$$r_j = (l_Y)_i|_{i=P_C} - (s_j)_i|_{i=P_C}$$

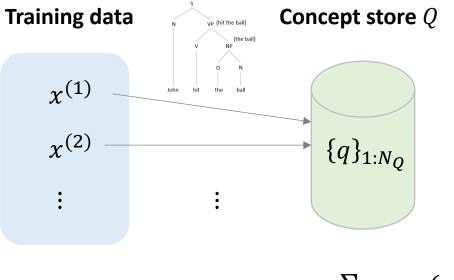
Original prediction probabilities

Predicted label

Question?

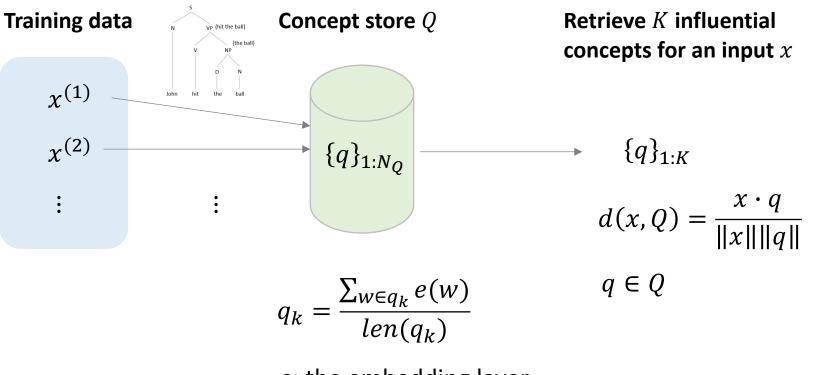
Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions

Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions

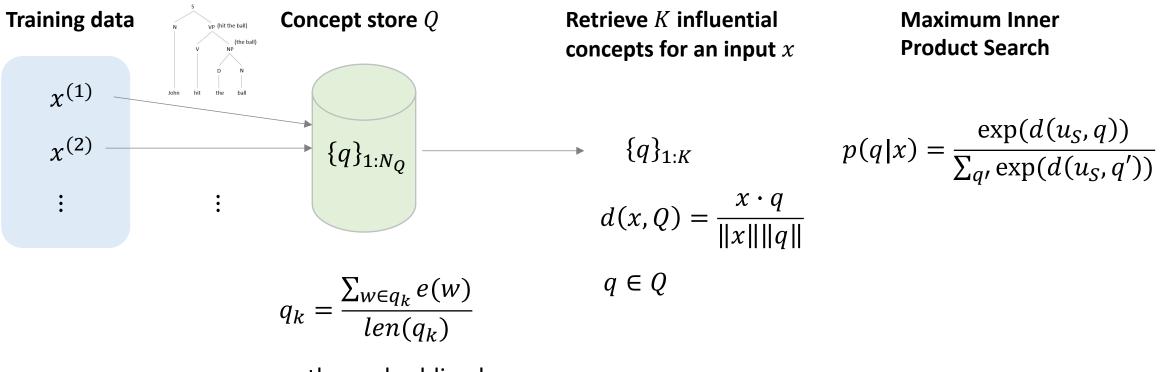


$$q_k = \frac{\sum_{w \in q_k} e(w)}{len(q_k)}$$

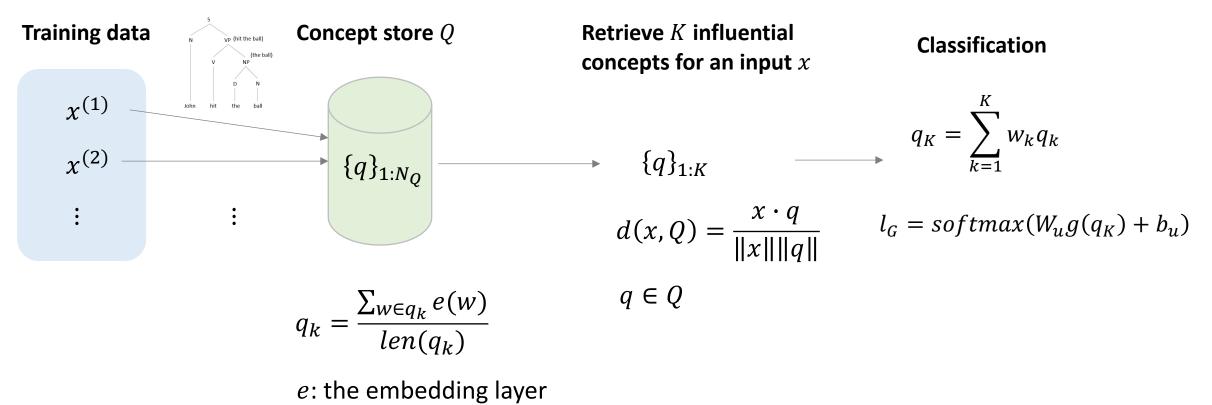
Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions



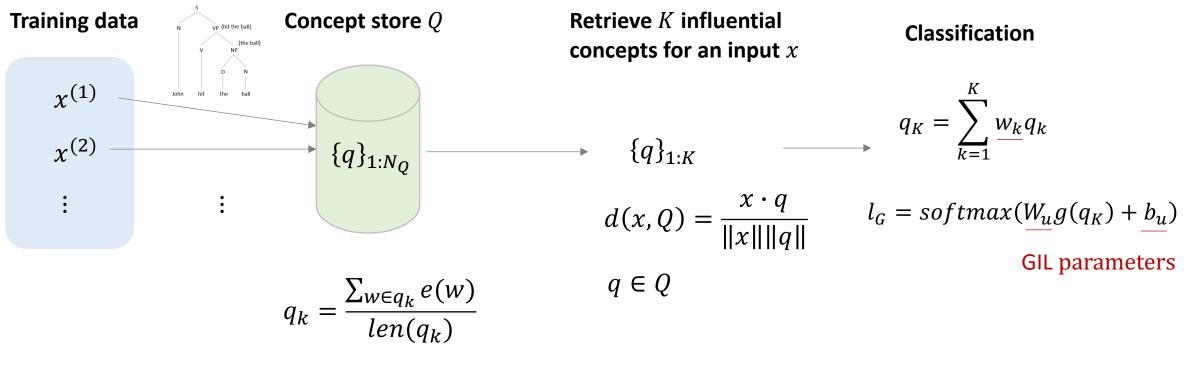
Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions



Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions

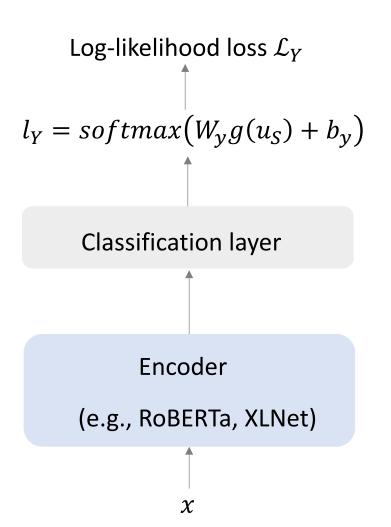


Interpret each data sample x by providing a set of K concepts from the training data which most influence the model's predictions

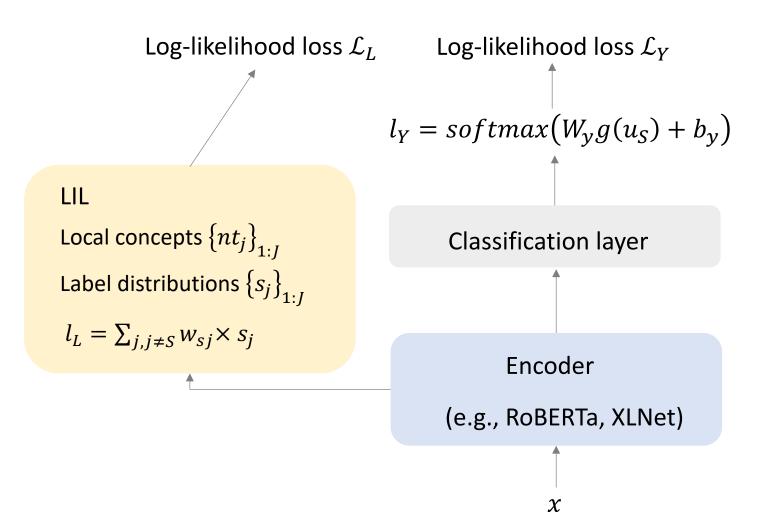


Question?

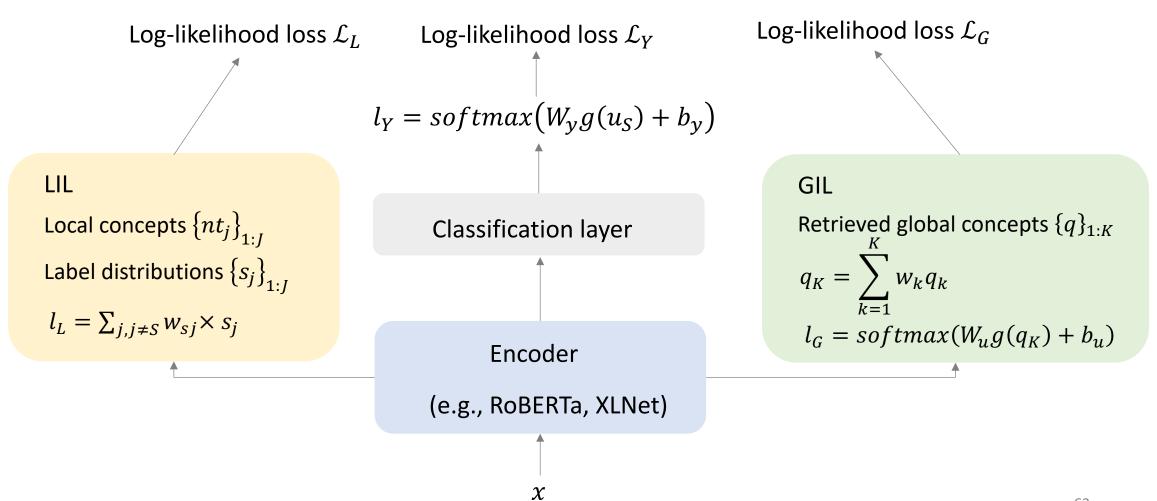
Training



Training

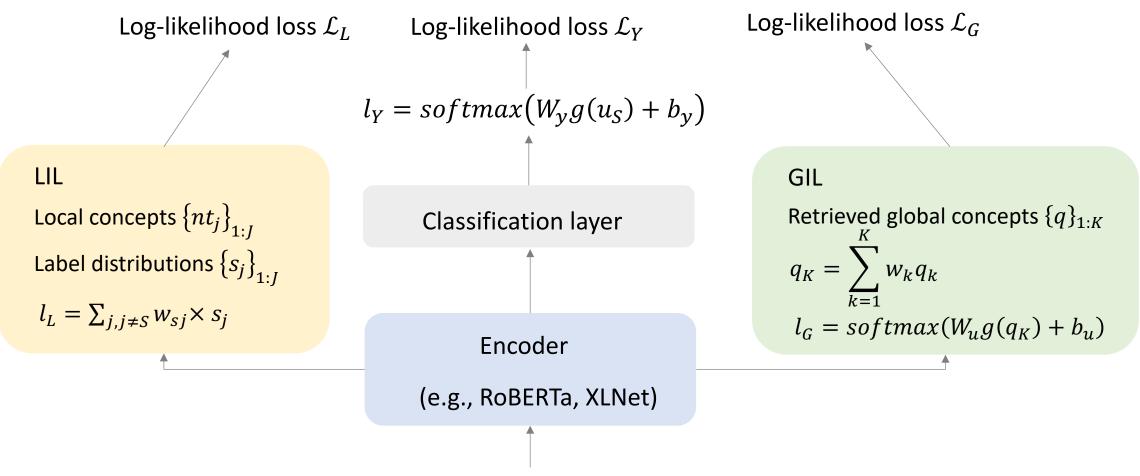


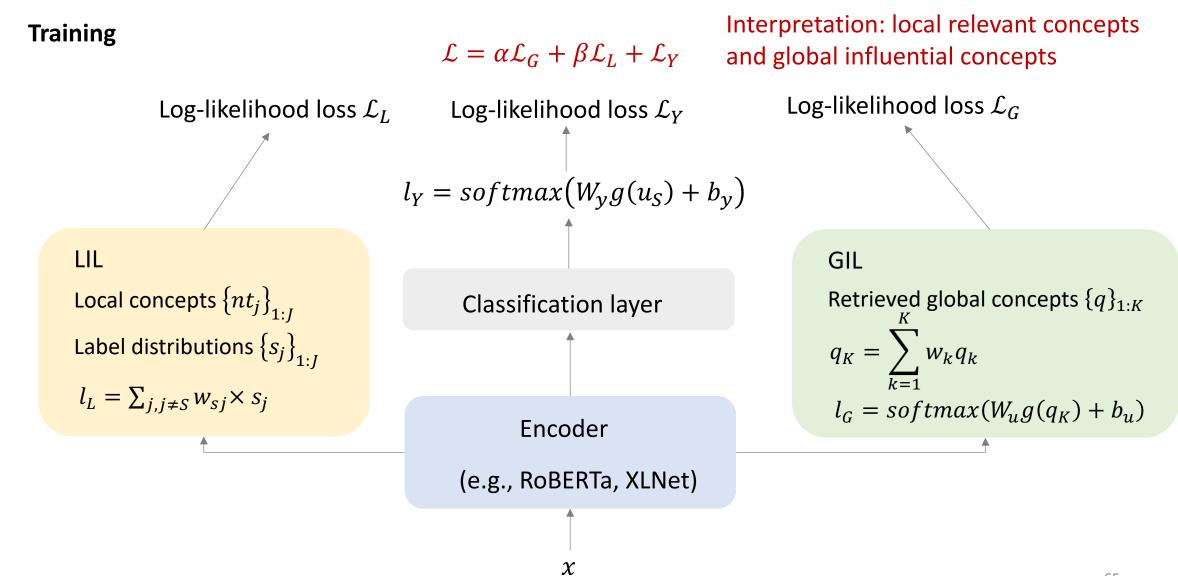
Training

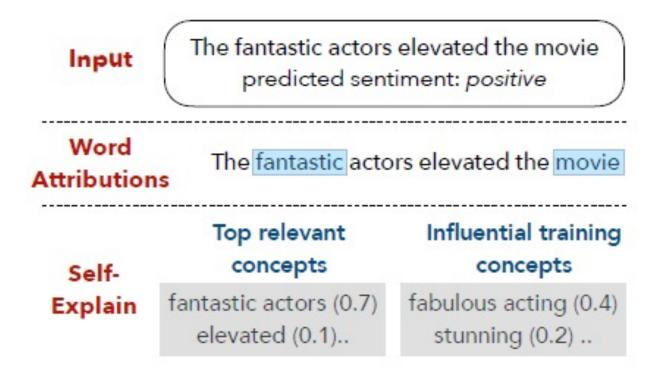


Training

 $\mathcal{L} = \alpha \mathcal{L}_G + \beta \mathcal{L}_L + \mathcal{L}_Y$







Question?

Classification performance

Comparable performance to base models across 5 text classification tasks

Model	SST-2	SST-5	TREC-6	TREC-50	SUBJ
XLNet	93.4	53.8	96.6	82.8	96.2
SELFEXPLAIN-XLNet (K=5)	94.6	55.2	96.4	83.0	96.4
SELFEXPLAIN-XLNet (K=10)	94.4	55.2	96.4	82.8	96.4
RoBERTa	94.8	53.5	97.0	89.0	96.2
SELFEXPLAIN-RoBERTa (K=5)	95.1	54.3	97.6	89.4	96.3
SELFEXPLAIN-RoBERTa (K=10)	95.1	54.1	97.6	89.2	96.3

Explanation evaluation (local relevant concepts, global influential concepts)

- Sufficiency Do explanations sufficiently reflect the model predictions?
- Plausibility Do explanations appear plausible and understandable to humans?
- Trustability Do explanations improve human trust in model predictions?

Explanation evaluation (local relevant concepts, global influential concepts)

Sufficiency – Do explanations sufficiently reflect the model predictions?

An explanation that achieves high accuracy using this classifier is indicative of its ability to recover the original model prediction

Explanation evaluation (local relevant concepts, global influential concepts)

Sufficiency – Do explanations sufficiently reflect the model predictions?

Model	Explanation	Accuracy 0.90	
Full input text	-2		
Lei et al. (2016)	contiguous	0.71	
	top- K tokens	0.74	
Bastings et al. (2019)	contiguous	0.60	
	top- K tokens	0.59	
Li et al. (2016)	contiguous	0.70	
	top- K tokens	0.68	
[CLS] Attn	contiguous	0.81	
	top- K tokens	0.81	
SELFEXPLAIN-LIL	top-K concepts	0.84	
SELFEXPLAIN-GIL	top- K concepts	0.93	

An explanation that achieves high accuracy using this classifier is indicative of its ability to recover the original model prediction

Baselines: attention/gradient-based explanations

- ✓ Both LIL and GIL explanations show high predictive performance
- ✓ GIL explanations outperform full-text performance

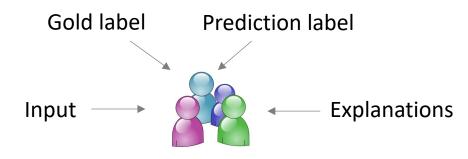
Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

Adequate justification

Asking human judges: "Does the explanation adequately justifies the model prediction?"



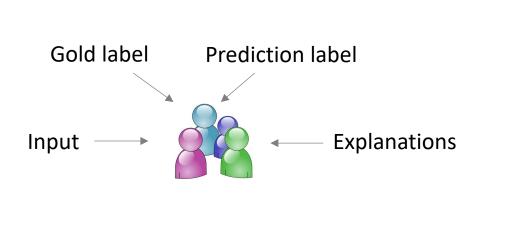
Explanation evaluation (local relevant concepts, global influential concepts)

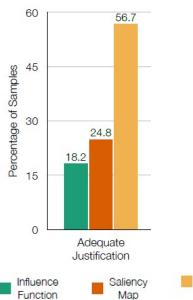
Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

Adequate justification

Asking human judges: "Does the explanation adequately justifies the model prediction?"





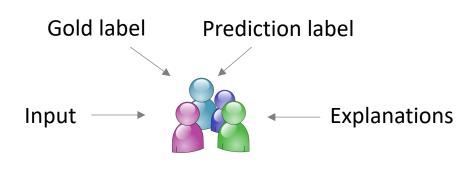
Explanation evaluation (local relevant concepts, global influential concepts)

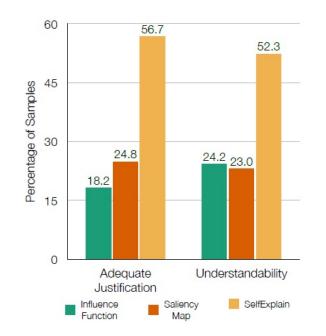
Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

Understandability

Asking human judges to select the explanations that they perceived to be more understandable





Explanation evaluation (local relevant concepts, global influential concepts)

Plausibility – Do explanations appear plausible and understandable to humans?

Trustability – Do explanations improve human trust in model predictions?

Trustability

Mean trust score: asking human judges to rate on a scale of 1–5 based on how much trust each of the model explanations instill

Analysis

Does SELFEXPLAIN's explanation help predict model behavior?

Asking human judges to predict the model decision with and without the presence of model explanations

 ✓ When users were presented with the explanation, their ability to predict model decision improved by an average of 22%

Analysis

Global interpretations seem more reasonable

Sample	P_C	Top relevant phrases from LIL	Top influential concepts from GIL
the iditarod lasts for days - this just felt like it did .	neg	for days	exploitation piece, heart attack
corny, schmaltzy and predictable, but still manages to be kind of heart warming, nonetheless.	pos	corny, schmaltzy, of heart	successfully blended satire, spell binding fun
suffers from the lack of a compelling or comprehensible narrative .	neg	comprehensible, the lack of	empty theatres, tumble weed
the structure the film takes may find matt damon and ben affleck once again looking for residuals as this officially completes a good will hunting trilogy that was never planned.	pos	the structure of the film	bravo, meaning and consolation

Analysis

Global interpretations are more stable to input perturbations

Input	Top LIL interpretations	Top GIL interpretations
it 's a <u>very</u> charming and often affecting journey	often affecting, very charming	scenes of cinematic perfection that steal your heart away, submerged, that extravagantly
it's a charming and often affecting journey of people	of people, charming and often affecting	scenes of cinematic perfection that steal your heart away, submerged, that extravagantly

Question?

Reference

- Alvarez Melis, David, and Tommi Jaakkola. "Towards robust interpretability with self-explaining neural networks." *Advances in neural information processing systems* 31 (2018).
- Rajagopal, Dheeraj, et al. "Selfexplain: A self-explaining architecture for neural text classifiers." *arXiv preprint arXiv:2103.12279* (2021).