

CS 4501/6501 Interpretable Machine Learning

Post-hoc explanations: beyond feature-level

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

Explaining Black-box Model

Model-agnostic

- Applicable to any black-box models
- Computational complexity
- Work well on traditional models (e.g., CNN), but not on complex DNN

SHAP

- Applicable to any black-box models
- Computational ٠ complexity
- Best performance (empirically)

Model-dependent

IG

- Require access to model gradients
- Simple, fast
- Work well on both traditional and **DNN** models

Attention

- Rely on attention ٠ mechanism
- Simple, fast (no additional computation)
- Not clear (much debate) ٠

Single Feature-level Explanation

Explanation Pos а $a_1 = 0.11$ 0.5 $a_2 = 0.46$ clever 0 $a_3 = 0.01$ piece $a_4 = -0.02$ of -0.5 $a_5 = 0.06$ cinema Neg Explanation Input aij \boldsymbol{x}_{ij}

When single features have interactions, it is critical to know the importance of the composite feature composed with these single features

5

Neg

Why does the model think

"journey" as positive?

(Yeh et al., 2020)

Beyond Feature Attribution

• Contextual Decomposition (CD)

• Hierarchical Explanation via Divisive Generation (HEDGE)

Beyond Word Importance: Contextual Decomposition to Extract Interactions From LSTMs

W. James Murdoch, Peter J. Liu, Bin Yu

(ICLR, 2018)

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

(Output gate)	$o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o)$
(Forget gate)	$f_t = \sigma \big(W_f x_t + V_f h_{t-1} + b_f \big)$
(Input gate)	$i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$

 x_t : current input h_{t-1} : previous output

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

(Output gate)	$o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o)$
(Forget gate)	$f_t = \sigma \left(W_f x_t + V_f h_{t-1} + b_f \right)$
(Input gate)	$i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$

W, V, b are model parameters

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

$$\begin{array}{ll} (\text{Output gate}) & o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o) \\ (\text{Forget gate}) & f_t = \sigma(W_f x_t + V_f h_{t-1} + b_f) \\ (\text{Input gate}) & i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i) \end{array}$$

 $\sigma(\cdot)$: sigmoid function

Range: 0 to 1

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

(Output gate) $o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o)$ (Forget gate) $f_t = \sigma(W_f x_t + V_f h_{t-1} + b_f)$ (Input gate) $i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$ $g_t = tanh(W_g x_t + V_g h_{t-1} + b_g)$ $c_t = f_t \odot c_{t-1} + [i_t \odot g_t]$ Information written into the cell

$$h_t = o_t \odot tanh(c_t)$$

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

(Output gate) $o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o)$ (Forget gate) $f_t = \sigma(W_f x_t + V_f h_{t-1} + b_f)$ (Input gate) $i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$

$$\begin{aligned} t_t &= o(w_i x_t + v_i n_{t-1} + b_i) \\ g_t &= tanh(W_g x_t + V_g h_{t-1} + b_g) \\ c_t &= \left[f_t \odot c_{t-1} \right] + i_t \odot g_t \quad \text{Information left in the cell after forgetting} \\ h_t &= o_t \odot tanh(c_t) \end{aligned}$$

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$

 $\begin{array}{ll} (\text{Output gate}) & o_t = \sigma(W_o x_t + V_o h_{t-1} + b_o) \\ (\text{Forget gate}) & f_t = \sigma(W_f x_t + V_f h_{t-1} + b_f) \\ (\text{Input gate}) & i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i) \\ & g_t = tanh(W_g x_t + V_g h_{t-1} + b_g) \\ & c_t = f_t \odot c_{t-1} + i_t \odot g_t \\ & h_t = o_t \odot tanh(c_t) \quad \text{Current output} \end{array}$

• Long Short-term Memory Network (LSTM) [Hochreiter and Schmidhuber, 1997]

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$ Cell: $c_t \in \mathbb{R}^{d_2}$ $(h_0 = c_0 = 0)$ State vector: $h_t \in \mathbb{R}^{d_2}$ $o_t = \sigma(W_0 x_t + V_0 h_{t-1} + b_0)$ (Output gate) (Forget gate) $f_t = \sigma (W_f x_t + V_f h_{t-1} + b_f)$ Probability distribution $t = 1, \cdots, T$ $i_t = \sigma(W_i x_t + V_i h_{t-1} + b_i)$ (Input gate) $p = softmax(Wh_T)$ _____ $g_t = tanh(W_a x_t + V_a h_{t-1} + b_a)$ $c_t = f_t \odot c_{t-1} + i_t \odot g_t$ $h_t = o_t \odot tanh(c_t)$

Question?

An arbitrary phrase: x_q, \dots, x_r $(1 \le q \le r \le T)$

Decompose each c_t and h_t into a sum of two contributions

Goal: compute the contribution of the phrase to model prediction

 $h_t = \beta_t + \gamma_t \qquad \beta_t, \, \beta_t^c : \text{contributions made solely by the given phrase}$ $c_t = \beta_t^c + \gamma_t^c \qquad \gamma_t, \, \gamma_t^c : \text{contributions involving elements outside of the phrase}$

An arbitrary phrase: x_q , \cdots , x_r $(1 \le q \le r \le T)$

Decompose each c_t and h_t into a sum of two contributions

Goal: compute the contribution of the phrase to model prediction

 $\begin{aligned} h_t &= \beta_t + \gamma_t & \beta_t, \, \beta_t^c : \text{contributions made solely by the given phrase} \\ c_t &= \beta_t^c + \gamma_t^c & \gamma_t, \, \gamma_t^c : \text{contributions involving elements outside of the phrase} \end{aligned}$

$$p = softmax(Wh_T) \longrightarrow p = softmax(W\beta_T + W\gamma_T)$$

the phrase's contribution
to the LSTM's prediction

An arbitrary phrase: x_q , \cdots , x_r $(1 \le q \le r \le T)$

Decompose each c_t and h_t into a sum of two contributions

Goal: compute the contribution of the phrase to model prediction

 $h_t = \beta_t + \gamma_t \qquad \beta_t, \beta_t^c : \text{contributions made solely by the given phrase}$ $c_t = \beta_t^c + \gamma_t^c \qquad \gamma_t, \gamma_t^c : \text{contributions involving elements outside of the phrase}$

$$p = softmax(Wh_T) \longrightarrow p = softmax(W\beta_T + W\gamma_T)$$

the phrase's contribution
to the LSTM's prediction

How to compute
$$\beta_t, \gamma_t$$
?

Disambiguating interactions between gates

$$i_{t} = \sigma(W_{i}x_{t} + V_{i}h_{t-1} + b_{i})$$

$$= L_{\sigma}(W_{i}x_{t}) + L_{\sigma}(V_{i}h_{t-1}) + L_{\sigma}(b_{i})$$

$$g_{t} = tanh(W_{g}x_{t} + V_{g}h_{t-1} + b_{g})$$

$$= L_{tanh}(W_{g}x_{t}) + L_{tanh}(V_{g}h_{t-1}) + L_{tanh}(b_{g})$$

Assume we have a way of linearizing the gates

Disambiguating interactions between gates

$$\begin{split} &i_t \odot g_t \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i h_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g h_{t-1}) + L_{tanh}(b_g) \right) \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i \beta_{t-1}) + L_{\sigma}(V_i \gamma_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g \beta_{t-1}) + L_{tanh}(V_g \beta_{t-1}) + L_{tanh}(V_g \gamma_{t-1}) + L_{tanh}(b_g) \right) \end{split}$$

Disambiguating interactions between gates

$$\begin{split} &i_t \odot g_t \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i h_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g h_{t-1}) + L_{tanh}(b_g) \right) \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i \beta_{t-1}) + L_{\sigma}(V_i \gamma_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g \beta_{t-1}) + L_{tanh}(V_g \gamma_{t-1}) + L_{tanh}(b_g) \right) \end{split}$$

Cross-terms:

 \Box solely from the phrase, e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\beta_{t-1})$

□ from some interaction between the phrase and other factors , e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\gamma_{t-1})$ □ purely from other factors , e.g., $L_{\sigma}(b_i) \odot L_{tanh}(V_g\gamma_{t-1})$ 28

Disambiguating interactions between gates

$$\begin{split} &i_t \odot g_t \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i h_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g h_{t-1}) + L_{tanh}(b_g) \right) \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i \beta_{t-1}) + L_{\sigma}(V_i \gamma_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g \beta_{t-1}) + L_{tanh}(V_g \gamma_{t-1}) + L_{tanh}(b_g) \right) \end{split}$$

Cross-terms:

solely from the phrase, e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\beta_{t-1}) \beta_t^u$

□ from some interaction between the phrase and other factors , e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\gamma_{t-1})$ □ purely from other factors , e.g., $L_{\sigma}(b_i) \odot L_{tanh}(V_g\gamma_{t-1})$ 29

Disambiguating interactions between gates

$$\begin{split} &i_t \odot g_t \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i h_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g h_{t-1}) + L_{tanh}(b_g) \right) \\ &= \left(L_{\sigma}(W_i x_t) + L_{\sigma}(V_i \beta_{t-1}) + L_{\sigma}(V_i \gamma_{t-1}) + L_{\sigma}(b_i) \right) \odot \left(L_{tanh}(W_g x_t) + L_{tanh}(V_g \beta_{t-1}) + L_{tanh}(V_g \gamma_{t-1}) + L_{tanh}(b_g) \right) \end{split}$$

Cross-terms:

- \Box solely from the phrase, e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\beta_{t-1})$
- from some interaction between the phrase and other factors, e.g., $L_{\sigma}(V_i\beta_{t-1}) \odot L_{tanh}(V_g\gamma_{t-1})$ purely from other factors, e.g., $L_{\sigma}(b_i) \odot L_{tanh}(V_g\gamma_{t-1})$ γ_t^u

Disambiguating interactions between gates

$$i_t \odot g_t = \beta_t^u + \gamma_t^u$$
$$f_t \odot c_{t-1} = \beta_t^f + \gamma_t^f$$
$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$
$$= \beta_t^u + \gamma_t^u + \beta_t^f + \gamma_t^f$$
$$= \beta_t^c + \gamma_t^c$$

Disambiguating interactions between gates

$$i_{t} \odot g_{t} = \beta_{t}^{u} + \gamma_{t}^{u} \qquad h_{t} = o_{t} \odot tanh(c_{t}) = o_{t} \odot tanh(\beta_{t}^{c} + \gamma_{t}^{c}) = o_{t} \odot (L_{tanh}(\beta_{t}^{c}) + L_{tanh}(\gamma_{t}^{c})) = o_{t} \odot (L_{tanh}(\beta_{t}^{c}) + o_{t} \odot L_{tanh}(\gamma_{t}^{c})) = \beta_{t}^{u} + \gamma_{t}^{u} + \beta_{t}^{f} + \gamma_{t}^{f} \qquad = \beta_{t} + \gamma_{t} = \beta_{t}^{c} + \gamma_{t}^{c}$$

Disambiguating interactions between gates

$$i_t \odot g_t = \beta_t^u + \gamma_t^u$$
$$f_t \odot c_{t-1} = \beta_t^f + \gamma_t^f$$
$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$
$$= \beta_t^u + \gamma_t^u + \beta_t^f + \gamma_t^f$$
$$= \beta_t^c + \gamma_t^c$$

$$\begin{aligned} h_t &= o_t \odot tanh(c_t) \\ &= o_t \odot tanh(\beta_t^c + \gamma_t^c) \\ &= o_t \odot (L_{tanh}(\beta_t^c) + L_{tanh}(\gamma_t^c)) \\ &= o_t \odot L_{tanh}(\beta_t^c) + o_t \odot L_{tanh}(\gamma_t^c) \\ &= \beta_t + \gamma_t \end{aligned}$$

Iteratively decomposing until we get $h_T = \beta_T + \gamma_T$ $\beta_0 = \gamma_0 = 0$ $\beta_t: x_t (q \le t \le r) \quad \gamma_t: x_t (t > r, t < q)$

Disambiguating interactions between gates

$$i_t \odot g_t = \beta_t^u + \gamma_t^u$$
$$f_t \odot c_{t-1} = \beta_t^f + \gamma_t^f$$
$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$
$$= \beta_t^u + \gamma_t^u + \beta_t^f + \gamma_t^f$$
$$= \beta_t^c + \gamma_t^c$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

$$= o_{t} \odot tanh(\beta_{t}^{c} + \gamma_{t}^{c})$$

$$= o_{t} \odot (L_{tanh}(\beta_{t}^{c}) + L_{tanh}(\gamma_{t}^{c}))$$

$$= o_{t} \odot L_{tanh}(\beta_{t}^{c}) + o_{t} \odot L_{tanh}(\gamma_{t}^{c})$$

$$= \beta_{t} + \gamma_{t}$$
What are the linearizing functions L_{σ} , L_{tanh} ?

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Telescoping sum (given a natural ordering to $\{y_i\}$)

$$L_{tanh}(y_k) = tanh\left(\sum_{j=1}^k y_j\right) - tanh\left(\sum_{j=1}^{k-1} y_j\right)$$
• Contextual Decomposition

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Telescoping sum (given a natural ordering to $\{y_i\}$)

$$L_{tanh}(y_k) = tanh\left(\sum_{j=1}^k y_j\right) - tanh\left(\sum_{j=1}^{k-1} y_j\right)$$

$$\sum_{i=1}^{N} L_{tanh}(y_i) = tanh\left(\sum_{j=1}^{N} y_j\right) - tanh\left(\sum_{j=1}^{N-1} y_j\right) + tanh\left(\sum_{j=1}^{N-1} y_j\right) - tanh\left(\sum_{j=1}^{N-2} y_j\right) + \dots + tanh\left(\sum_{j=1}^{2} y_j\right) - tanh\left(\sum_{j=1}^{1} y_j\right) + tanh\left(\sum_{j=1}^{1} y_j\right) - tanh\left(\sum_{j=1}^{N-1} y_j\right) - tanh$$

• Contextual Decomposition

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Telescoping sum (given a natural ordering to $\{y_i\}$)

$$L_{tanh}(y_k) = tanh\left(\sum_{j=1}^{k} y_j\right) - tanh\left(\sum_{j=1}^{k-1} y_j\right)$$

$$\binom{N}{N-1} = \binom{N-1}{N-2} = \binom{N-2}{N-2} = \binom{2}{N-2} = \binom{1}{N-2} = \binom{$$

$$\sum_{i=1}^{N} L_{tanh}(y_i) = tanh\left(\sum_{j=1}^{N} y_j\right) - tanh\left(\sum_{j=1}^{N-1} y_j\right) + tanh\left(\sum_{j=1}^{N-1} y_j\right) - tanh\left(\sum_{j=1}^{N-2} y_j\right) + \dots + tanh\left(\sum_{j=1}^{2} y_j\right) - tanh\left(\sum_{j=1}^{1} y_j\right) + tanh\left(\sum_{j=1}^{1} y_j\right) - tanh\left(\sum_{j=1}^{N-1} y_j\right) - tanh$$

Contextual Decomposition

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Telescoping sum (given a natural ordering to $\{y_i\}$)

$$L_{tanh}(y_k) = tanh\left(\sum_{j=1}^k y_j\right) - tanh\left(\sum_{j=1}^{k-1} y_j\right) \qquad \begin{cases} \beta_t \\ \text{no } t \end{cases}$$

 $\{x_{t-1}, \gamma_{t-1}, x_t\}$ have clear ordering

Contextual Decomposition

Linearizing activation functions (L_{σ}, L_{tanh})

$$tanh\left(\sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} L_{tanh}(y_i) \qquad (N \le 4)$$

Telescoping sum (given a natural ordering to $\{y_i\}$)

$$L_{tanh}(y_k) = tanh\left(\sum_{j=1}^{k} y_j\right) - tanh\left(\sum_{j=1}^{k-1} y_j\right) \qquad \begin{array}{l} \text{All permutations: } \pi_1, \cdots, \pi_{M_N} \\ \pi_i^{-1}(k): \text{ the position of } y_k \text{ in } \pi_i \end{array}$$
$$L_{tanh}(y_k) = \frac{1}{M_N} \sum_{i=1}^{M_N} \left[tanh\left(\sum_{j=1}^{\pi_i^{-1}(k)} y_{\pi_i(j)}\right) - tanh\left(\sum_{j=1}^{\pi_i^{-1}(k)-1} y_{\pi_i(j)}\right) \right]$$

Average over all orderings

Summary

• LSTM

Input word embeddings: $x_1, \dots, x_T \in \mathbb{R}^{d_1}$

$$o_{t} = \sigma(W_{o}x_{t} + V_{o}h_{t-1} + b_{o})$$

$$f_{t} = \sigma(W_{f}x_{t} + V_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + V_{i}h_{t-1} + b_{i})$$

$$g_{t} = tanh(W_{g}x_{t} + V_{g}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

• Contribution of an arbitrary phrase: $x_q, \dots, x_r \ (1 \le q \le r \le T)$

$$\sigma(\cdot) = \sum L_{\sigma} , tanh(\cdot) = \sum L_{tanh}$$
$$h_t = \beta_t + \gamma_t$$

$$t = 1, \cdots, T$$

р

$$= softmax(W\beta_T + W\gamma_T)$$

the phrase's contribution

to the LSTM's prediction

Question?

Visualizations

Text

"used to be my favorite" (negative) "not worth the time" (negative)

Attribution Method	Heat Map								
Gradient	used	l to	be	my	favorite	not	worth	the	time
Leave One Out (Li et al., 2016)	used	to	be	my	favorite	not	worth	the	time
Cell decomposition (Mur- doch & Szlam, 2017)	used	l to	be	my	favorite	not	worth	the	time
Integrated gradients (Sun- dararajan et al., 2017)	usec	l to	be	my	favorite	not	worth	the	time
Contextual decomposition	usec	l to	be	my	favorite	not	worth	the	time
Legend Very Negative Negative Neutral Positive Very Positive									

Visualizations

The first phrase is positive, but the second one is negative

CD is the only method that accurately captures this dynamic

Attribution Method	Heat Map						
Gradient	It's easy to love Robin Tunney - she's pretty and she can act -						
2	but it gets harder and harder to understand her choices.						
Leave one out (Li et al., 2016)	it's easy to love Robin Tunney – she's pretty and she can act –						
	but it gets harder and harder to understand her choices.						
Cell decomposition (Murdoch & Szlam, 2017)	It's easy to love Robin Tunney – she's pretty and she can act –						
	but it gets harder and harder to understand her choices.						
Integrated gradients	It's easy to love Robin Tunney – she's pretty and she can act –						
(Sundararajan et al., 2017)	but it gets harder and harder to understand her choices.						
Contextual decomposi-	It's easy to love Robin Tunney – she's pretty and she can act –						
uon	but it gets harder and harder to understand her choices.						

Discussion

- CD is model-dependent
- Decomposing complex DNN (e.g., transformer) is not trivial

Beyond Feature Attribution

• Contextual Decomposition (CD)

• Hierarchical Explanation via Divisive Generation (HEDGE)

Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection

Hanjie Chen, Guangtao Zheng, Yangfeng Ji

(ACL, 2020)

Why we need hierarchical explanations?

Why we need hierarchical explanations?

Why we need hierarchical explanations?

Hierarchical explanation via divisive generation (HEDGE)

- Where is the dividing point?
- Which text segment should be split?
- How to quantify feature importance?

Definition

- A text with *n* words: $\mathbf{x} = (x_1, \cdots, x_n)$
- A text span: $x_{(s_i, s_{i+1}]} = (x_{s_i+1}, \dots, x_{s_{i+1}})$
- A partition: $\mathcal{P} = \{x_{(0,s_1]}, x_{(s_1, s_2]}, \dots, x_{(s_{P-1},n]}\}$
- Interaction score: $\phi(\cdot, \cdot)$
- Importance score: $\psi(\cdot)$

• Where is the dividing point?

The *local weakest* interaction point:

$$\min_{j\in(s_i,s_{i+1})}\phi(\boldsymbol{x}_{(s_i,j]},\boldsymbol{x}_{(j,s_{i+1}]}|\mathcal{P})$$

• Where is the dividing point?

The *local weakest* interaction point:

 $\min_{j\in(s_i,s_{i+1})}\phi(\mathbf{x}_{(s_i,j]},\mathbf{x}_{(j,s_{i+1}]}|\mathcal{P})$

• Which text segment should be split?

The *global weakest* interaction point:

$$\min_{\boldsymbol{x}_{(s_{i},s_{i+1}]}\in\mathcal{P}}\min_{j\in(s_{i},s_{i+1})}\phi(\boldsymbol{x}_{(s_{i},j]},\boldsymbol{x}_{(j,s_{i+1}]}|\mathcal{P})$$

• Where is the dividing point?

The *local weakest* interaction point:

 $\min_{j\in(s_i,s_{i+1})}\phi(\boldsymbol{x}_{(s_i,j]},\boldsymbol{x}_{(j,s_{i+1}]}|\mathcal{P})$

• Which text segment should be split?

The *global weakest* interaction point:

$$\min_{\boldsymbol{x}_{(s_{i},s_{i+1}]}\in\mathcal{P}}\min_{j\in(s_{i},s_{i+1})}\phi(\boldsymbol{x}_{(s_{i},j]},\boldsymbol{x}_{(j,s_{i+1}]}|\mathcal{P})$$

• How to quantify feature importance?

Feature importance score: $\psi(\cdot)$

• Where is the dividing point?

The *local weakest* interaction point:

 $\min_{j\in(s_i,s_{i+1})} \phi(\mathbf{x}_{(s_i,j]},\mathbf{x}_{(j,s_{i+1}]}|\mathcal{P})$

• Which text segment should be split?

The *global weakest* interaction point:

 $\min_{\boldsymbol{x}_{(s_{i},s_{i+1}]}\in\mathcal{P}}\min_{j\in(s_{i},s_{i+1})}\phi(\boldsymbol{x}_{(s_{i},j]},\boldsymbol{x}_{(j,s_{i+1}]}|\mathcal{P})$

• How to quantify feature importance?

Feature importance score: $\psi(\cdot)$

• Feature interaction score $\phi(\cdot, \cdot)$

Calculate the interaction between j_1 and j_2 via Shapley interaction index [Fujimoto et al., 2006, Lundberg et al., 2018]

Quantifying the contribution of each player

Quantifying the interaction between players

Shapley Interaction Index

Shapley Interaction Index

Coalitions		Payoff	Marginal contribution with player 3		
		$P_1 - P_1'$	ΔP_1		
		$P_2 - P_2'$	ΔP_2		
		$P_3 - P_3'$	ΔP_3		
	Ø	$P_4 - P_4'$	ΔP_4		

Coaliti	ons			Payo	ff		Marginal contribution with player 3	Payoff
		60		<i>P</i> ₁	_	<i>P</i> ₁ ′	ΔP_1	Q_1
				<i>P</i> ₂	_	<i>P</i> ₂ ′	ΔP_2	Q_2
		69	00	<i>P</i> ₃	_	<i>P</i> ₃ ′	ΔP_3	Q_3
		Ø		P_4	_	<i>P</i> ₄ ′	ΔP_4	Q_4

Coalitions		Payoff	Payoff Marginal contribution With player 3		Marginal contribution without player 3	
		$P_1 - P_1'$	ΔP_1	Q_1 –	$Q_1' \Delta Q_1$	
		$P_2 - P_2'$	ΔP_2	Q ₂ -	$Q_2' \Delta Q_2$	
		$P_3 - P_3'$	ΔP_3	Q_3 –	$Q_3' \Delta Q_3$	
	Ø	$P_4 - P_4'$	ΔP_4	Q_4 –	$Q_4' \Delta Q_4$	

Coalitions		Payoff	Marginal contribution with player 3	Payoff	Marginal contribution without player 3	
		$P_1 - P_1'$	ΔP_1	Q_1 –	$Q_1' \Delta Q_1$	
		$P_2 - P_2'$	ΔP_2	Q_2 –	$Q_2' \Delta Q_2$	
		$P_3 - P_3'$	ΔP_3	Q_3 –	$Q_3' \Delta Q_3$	
	Ø	$P_4 - P_4'$	ΔP_4	Q_4 –	$Q_4' \Delta Q_4$	
		$\phi_{1,3} = \sum \Delta P$	$d_i - \Delta Q_i$			

Coaliti	ons		Payof	f		Marginal contrib with player 3	ution	Payoff	Margir withou	nal contribution It player 3
		6.0	<i>P</i> ₁	_	<i>P</i> ₁ ′	ΔP_1		Q_1 –	Q_1'	ΔQ_1
			<i>P</i> ₂	_	<i>P</i> ₂ ′	ΔP_2		Q ₂ -	Q_2'	ΔQ_2
		(0.0) 	 <i>P</i> ₃	_	<i>P</i> ₃ ′	ΔP_3		Q ₃ –	Q_3'	ΔQ_3
		Ø	P_4	_	<i>P</i> ₄ ′	ΔP_4		Q ₄ -	Q_4'	ΔQ_4
			$\phi_{1,3}$: $\phi_{3,1}$:	$=\sum_{=\phi_1}$	ΔP_i	$-\Delta Q_i$	interact $\phi_{3,1} + \phi_{3,1}$	tion $\phi_{1,3}$		

• Feature interaction score $\phi(\cdot, \cdot)$

Calculate the interaction between j_1 and j_2 via Shapley interaction index [Fujimoto et al., 2006, Lundberg et al., 2018]

$$\phi(j_1, j_2 | \mathcal{P}) = \sum_{S \subseteq \mathcal{N} \setminus \{j_1, j_2\}} \frac{|S|! \left(P - |S| - 1\right)!}{P!} \gamma(j_1, j_2, S)$$

 $\gamma(j_1, j_2, S) = \mathbb{E}[f(\mathbf{x}')|S \cup \{j_1, j_2\}] - \mathbb{E}[f(\mathbf{x}')|S \cup \{j_2\}] - (\mathbb{E}[f(\mathbf{x}')|S \cup \{j_1\}] - \mathbb{E}[f(\mathbf{x}')|S])$

The influence of j_1 on the model output with j_2 considered

without j_2 considered

• Feature interaction score $\phi(\cdot, \cdot)$

Calculate the interaction between j_1 and j_2 via Shapley interaction index [Fujimoto et al., 2006, Lundberg et al., 2018]

$$\phi(j_1, j_2 | \mathcal{P}) = \sum_{S \subseteq \mathcal{N} \setminus \{j_1, j_2\}} \frac{|S|! \left(P - |S| - 1\right)!}{P!} \gamma(j_1, j_2, S)$$

 $\gamma(j_1, j_2, S) = \mathbb{E}[f(\mathbf{x}')|S \cup \{j_1, j_2\}] - \mathbb{E}[f(\mathbf{x}')|S \cup \{j_2\}] - (\mathbb{E}[f(\mathbf{x}')|S \cup \{j_1\}] - \mathbb{E}[f(\mathbf{x}')|S])$

The influence of j_1 on the model output with j_2 considered

without j_2 considered

• Feature importance score $\psi(\cdot, \cdot)$

$$\psi(\mathbf{x}_{(s_{i}, s_{i+1}]}) = \underline{f_{\hat{y}}}(\mathbf{x}_{(s_{i}, s_{i+1}]}) - \max_{y' \neq \hat{y}, y' \in \mathcal{Y}} f_{y'}(\mathbf{x}_{(s_{i}, s_{i+1}]})$$

Predicted label on x

Pipeline

Question?

Qualitative Analysis

- Compare HEDGE in interpreting the LSTM and BERT model
 - BERT gives the correct prediction "positive", while LSTM makes a wrong prediction "negative"
 - HEDGE can explain different model prediction behaviors

Quantitative Evaluation

• The area over the perturbation curve (AOPC) [Nguyen, 2018, Samek et al., 2016]

$$AOPC(k) = \frac{1}{N} \sum_{i=1}^{N} \left\{ p(\hat{y} | \mathbf{x}_i) - p(\hat{y} | \widetilde{\mathbf{x}}_i^{(k)}) \right\} \qquad \mathbf{x}_i \qquad \mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \mathbf{x}_4 \qquad \cdots \qquad \mathbf{x}_7 \qquad \mathbf{x}_8 \qquad \cdots \qquad \mathbf{x}_{14} \qquad \mathbf{x}_{15}$$

$$\checkmark \text{ Higher AOPCs are better} \qquad \qquad \widetilde{\mathbf{x}}_i^{(k)} \qquad \mathbf{x}_1 \qquad \mathbf{x}_3 \qquad \mathbf{x}_4 \qquad \cdots \qquad \mathbf{x}_8 \qquad \cdots \qquad \mathbf{x}_{15}$$
\checkmark

• The area over the perturbation curve (AOPC) [Nguyen, 2018, Samek et al., 2016]

$$AOPC(k) = \frac{1}{N} \sum_{i=1}^{N} \left\{ p(\hat{y} | \mathbf{x}_i) - p(\hat{y} | \widetilde{\mathbf{x}}_i^{(k)}) \right\} \qquad \mathbf{x}_i \qquad \mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \mathbf{x}_4 \qquad \cdots \qquad \mathbf{x}_7 \qquad \mathbf{x}_8 \qquad \cdots \qquad \mathbf{x}_{14} \qquad \mathbf{x}_{15}$$

Higher AOPCs are better
$$\widetilde{\mathbf{x}}_i^{(k)} \qquad \mathbf{x}_1 \qquad \mathbf{x}_3 \qquad \mathbf{x}_4 \qquad \cdots \qquad \mathbf{x}_8 \qquad \cdots \qquad \mathbf{x}_{15}$$

• Log-odds [Shrikumar et al., 2017, Chen et al., 2018]

$$Log - odds(r) = \frac{1}{N} \sum_{i=1}^{N} \log \frac{p\left(\hat{y} \mid \widetilde{\boldsymbol{x}}_{i}^{(r)}\right)}{p\left(\hat{y} \mid \boldsymbol{x}_{i}\right)}$$

 \checkmark Lower log-odds scores are better

- AOPC and log-odds scores of the CNN model on the IMDB dataset
 - HEDGE achieves the best performance under both evaluation metrics

Cohesion-score

• Cohesion - score =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{Q} \sum_{q=1}^{Q} \left\{ p(\hat{y} | \boldsymbol{x}_i) - p(\hat{y} | \overline{\boldsymbol{x}}_i^{(q)}) \right\}$$

 $\checkmark\,$ Higher cohesion-scores are better

- Cohesion-score
 - Cohesion score = $\frac{1}{N} \sum_{i=1}^{N} \frac{1}{Q} \sum_{q=1}^{Q} \left\{ p(\hat{y} | \mathbf{x}_i) p(\hat{y} | \overline{\mathbf{x}}_i^{(q)}) \right\}$

 $\checkmark\,$ Higher cohesion-scores are better

Results

Methods	Models	Cohesion-score	
		SST	IMDB
Hedge	CNN	0.016	0.012
	BERT	0.124	0.103
	LSTM	0.020	0.050
ACD	LSTM	0.015	0.038

✓ HEDGE is better at capturing feature interactions

- Cohesion-score
 - Cohesion score = $\frac{1}{N} \sum_{i=1}^{N} \frac{1}{Q} \sum_{q=1}^{Q} \left\{ p(\hat{y} | \mathbf{x}_i) p(\hat{y} | \overline{\mathbf{x}}_i^{(q)}) \right\}$

 $\checkmark\,$ Higher cohesion-scores are better

Results

Methods	Models	Cohesion-score	
		SST	IMDB
HEDGE	CNN	0.016	0.012
	BERT	0.124	0.103
	LSTM	0.020	0.050
ACD	LSTM	0.015	0.038

 ✓ BERT is more sensitive to perturbations on important phrases

Human Evaluation

• Compare human annotations and model predictions

Human Evaluation

• Coherence scores of different explanation methods with LSTM model on the IMDB dataset

Methods	Coherence Score		
Leave-one-out	0.82		
ACD	0.68		
LIME	0.85		
L-Shapley	0.75		
C-Shapley	0.73		
KernelSHAP	0.56		
SampleShapley	0.78		
HEDGE	0.89		

Question?

Reference

- Murdoch, W. James, Peter J. Liu, and Bin Yu. "Beyond word importance: Contextual decomposition to extract interactions from lstms." *arXiv preprint arXiv:1801.05453* (2018).
- Chen, Hanjie, Guangtao Zheng, and Yangfeng Ji. "Generating hierarchical explanations on text classification via feature interaction detection." *arXiv preprint arXiv:2004.02015* (2020).
- Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." *Advances in Neural Information Processing Systems* 33 (2020): 20554-20565.
- Sepp Hochreiter and J[¨]urgen Schmidhuber. Long short-term memory. Neural computation, 9(8): 1735–1780, 1997.
- Scott M Lundberg, Gabriel G Erion, and Su-In Lee. 2018. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.