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Perturbation-based methods

 Model-agnostic (black-box)
* Perturbing the input and observing
model prediction change
-y * Extracting relationships between
input features and the output

Input

Interpreter



Perturbation-based methods

 Model-agnostic (black-box)

* Perturbing the input and observing

Output model prediction change

-y * Extracting relationships between
input features and the output

Input

 Applicable to any black-box models
 Computational complexity

Interpreter



Explaining Black-box Model

Additional information from the model

\n___
-~

-
"
-

S \ Ve

\;//(gradients, attentions)

Interpreter

Model-dependent (white-box)
Additional information: gradients,
attentions

Simple, fast, efficient

Not applicable if no such
information available



Explaining Black-box Model

 @Gradient-based methods

e Attention-based methods



Gradient-based Explanation

The gradient of a function f on x € R™ is
- af -
0x4

o

10X,

Vi(x) =

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0



Gradient-based Explanation

The gradient of a function f on x € R™ is

o7 o

0x, The derivative ox; indicates how
Vilx) = : much f will change when x;

i increases a little bit

10Xy,

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0



Gradient-based Explanation

af

Model f

Gradient

- fx)

axl

af

d0xy,



Gradient-based Explanation

X2 7 Model f - fx)

______

afi 4 Gradient

The influence of “tiny change” to the
feature on the model prediction

______



Gradient-based Explanation

Model f

- fx)

af

Gradient

axl

af

v" One backpropagation

v' Simple, fast

d0xy,
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Gradient-based Explanation

X2

X1 is more important than x,

v’ Changing x; can flip the model prediction

v’ Changing x, would not influence the
model prediction
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Gradient-based Explanation

Problem 1: saturated outputs lead to unintuitive gradients

g+ xp, when (x; + x,) < 1
Y711, when (x; +x,) =1
S
X1 = 1, Xy = 1
The gradient on x4 or x5 is
1r : 0, but that does not mean
/ neither is important

0 1 2 X1 + X2

(Shrikumar et al., 2017)
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

y = max(0,x — 10)

y A
The gradient changes dramatically
0 10 x

(Shrikumar et al., 2017)
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

y = max(0,x — 10)

Need to replace “Relu” with

Y “Softplus” activation

The gradient changes dramatically |

4] — Softplus(f=1)

- Softplus(f =5)
y
y
1.
| . o

0 10 T R
X

(Shrikumar et al., 2017)
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Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

X2
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Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

Input gradients are misleading, resulting in a noisy saliency map

Image Sensitivity map M.

(Smilkov et al., 2017)
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to
inputs and average the gradients

(Smilkov et al., 2017)

ply|x)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models Y



Gradient-based Explanation

Do NOT rely on a single gradient calculation

* SmoothGrad: add gaussian noise to * Integrated Gradients: average gradients
inputs and average the gradients along a path from baseline to the input
(Smilkov et al., 2017) (Sundararajan et al., 2017)

p(yIx) s p(ylx)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models 18



Gradient-based Explanation

Do NOT rely on a single gradient calculation

* SmoothGrad: add gaussian noise to * Integrated Gradients: average gradients
inputs and average the gradients along a path from baseline to the input
(Smilkov et al., 2017) (Sundararajan et al., 2017)

p(y[x) p(ylx)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models 9



Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qigi Yan

(ICML, 2017)



Two Fundamental Axioms

* Sensitivity
For every input and baseline that differ in one feature but have different
predictions then the differing feature should be given a non-zero attribution

Input Baseline Attribution
a X,
clever Xy elever - - a, = 0.46
piece X3 piece (a, #0)
of X, of X4
cinema X5 cinema X5

Prediction Positive Negative
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Two Fundamental Axioms

* Sensitivity

Gradients violate Sensitivity

)

X
1,

-

whenx <1
whenx > 1

v

Input Output
x =2 Yy =
Baseline

x=20 y=20

The output changes 1, while the
gradient method gives attribution
of 0 to x

22



Two Fundamental Axioms

* Implementation invariance

The attributions are always identical for two functionally equivalent networks

The outputs of two networks are
equal for all inputs, despite having
very different implementations

f(h1(x)) = f(hz(x))

23



* Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essentially about implementation invariance:

of of oh dg 4 )
dx o0h dg O0x x - g— h—1 . f(x)




* Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

of _of dh dyg

dx Oh Bg Ox

-

— )
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Two Fundamental Axioms
* Implementation invariance
The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

of _of dh dyg 4 ™

dx Oh 0g 0x x g h L. f(x)

Q Some methods (e.g., LRP and Deeplift) do N
not satisfy the implementation invariance

26



* Integrated Gradients
Get samples along the straight line from x' to x

f: neural network X

4
4

x € R™: input

x' € R™ : baseline
(e.g., black image, zero
embedding vector) e

!

X

X talx—x) ac€(0,1)



* Integrated Gradients
Compute gradients at all points along the path

f: neural network
x € R™: input .

x' € R" : baseline P

(e.g., black image, zero \7 .
embedding vector) ? | ¥ +talx—x") a€(0,1)

X



* Integrated Gradients
Cumulate these gradients

f: neural network

X
//./'
x € R™:input e
! n. . /\"
x € R" : baseline
. R
(e.g., black image, zero o .
embedding vector) f | ¥ +talx—x") a€(0,1)
xl

L af(x' + a(x — x))
A%, da

16,6) = G = x)x
T a=0
On the it" dimension



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

> 160 = F(@) - f&)
i=1



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

n Sensitivity: for every input and

Z I1G;(x) = f(x) — f(x)) baseline th.at differ in o.ne.feature

— but have different predictions
then the differing feature should
be given a non-zero attribution

31



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

Sensitivity: for every input and

n
z IG;(x) = f(x) — f(x) baseline th.at differ in o.ne.feature
— but have different predictions

then the differing feature should
be given a non-zero attribution

Sensitivity

Implementation invariance

32



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

> 160 = F(@) - f@)
= f(x)~0

Shapley
g9(z) = ¢o + Xiz1 Pizi

33



Question?

34



* Uniqueness of Integrated Gradients

Each path yields a different attribution method

1 .
x pathic o = [ POIID

v(a): path function, y(0) = x’, y(1) = x

|G is the straight path:

; v(a) =x" + alx — x")

35



* Uniqueness of Integrated Gradients

Each path yields a different attribution method

1 af(y(a)) ayi(a) .

X PathlG;(x =f
(%) _o Ovi(@) 0«

a

v(a): path function, y(0) = x’, y(1) = x

Sensitivity

X Implementation invariance

36



* Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

X v The simplest path
v Preserving symmetry

For all inputs and baselines that have identical
values for symmetric variables, the symmetric
variables receive identical attributions

Swapping the two variables
x' does not change the function

fx,y) =f,x)

37



* Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

v The simplest path
v Preserving symmetry

For all inputs and baselines that have identical
values for symmetric variables, the symmetric
variables receive identical attributions

Example

logistic_regression(x; + x5)

Input: x;, = x, =1
P _ ! ? Attr(x;) = Attr(x,)
Baseline: x; = x, =0



* Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?

v The simplest path
v Preserving symmetry

For all inputs and baselines that have identical
values for symmetric variables, the symmetric
variables receive identical attributions

Example

logistic_regression(x; + x5)
Theorem: |G is the unique
path method that is
symmetry-preserving

Input: x;, = x, =1
P _ ! 2 Attr(x;) = Attr(x,)
Baseline: x; = x, =0

39



* Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

m 0f(x’+%(x—x’)> 1
16,() ~ (xi = %)% ) x

0x; m
k=1

m: the number of steps



* Applications of Integrated Gradients

Task: object recognition
MOdEl' GoogIeNet Original image Top label and score Integrated gradients Gradients at image

Top label: reflex camera

Dataset: ImageNet

Score: 0.993755

Integrated gradients e |
are better at reflecting Top label: ireboat
distinctive features of B Scors: 0-%9%ee
the input image B e
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Question?

42



Explaining Black-box Model

e Attention-based methods

43



Attention

What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few
things while ignoring others

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-
mechanism-deep-learning/
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Attention

What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few
things while ignoring others

The attention mechanism
for neural networks is to
mimic human brain actions
in a simplified manner

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-
mechanism-deep-learning/
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Attention

Light up natural language procession (NLP)

Transformer BERT GPT

Qutput
Probabilities

Add & Norm

Feed
Forward

| Add & Norm :

Emaimers [ s | Promisa | Dot | Fypothests | avact | | Tramsiomer ]| Unear |

san | Ted1 | oom | Temz | e | [ Transiomer |
< (+}+ Unear

| san | Tet2 | pem | Text1 ]mm]}-|‘rvmstonnev|—]

Similarity

f'" Add & Norm | - B
Multi-Head [
Feed Attention san | comext | peim | Answer1 [ Eamc | Hof Transtomer |+ Unear
Forward T 7 Nx ]
Mukiple Chaice | Sant ] Cantext ] Dedm LAmz ]Extm] l’rmdolmuj—d Linear
\ ‘ L L i s H -
Add & Norm P ————— .
Nx | —(AddaNom) —— san | Comext | peim | AnswerN | Bama ]J-{ Transt |+ Uinear |-
Multi-Head Multi-Head
Attention Attention
AT ) 1
\_‘ J . —_—,
Positional @‘(9 e Positional
Encoding Encoding
Input QOutput
Embedding Embedding
Inputs Outputs

(shifted right)

(Vaswani et al., 2017) (Devlin et al., 2018) (Radford et al., 2018) 46



Context vector: a good summary of the input

Output Yt-1 YVt

Decoder
e 'S4 S
hidden states t-1 t
Ct
@D
Encoder %\
hidden states h, h; hy,
Hidden layer

Input X1 X2 Xn



Attention

Context vector: a good summary of the input

Output V-1 Ve
Decoder e § S =
hidden states ol t C: = z agih; Context vector for output y;

Ct i=1
D ay; = align(y, x;) How well y; and x; are aligned
Encoder %\ — exp(score(st_l, hi)) Softmax of some predefined
hidden states h, h; hy k=1 exP(SCO"‘e(St—L hk)) alignment score
Hidden layer

Input X1 X2 Xn
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Attention

Context vector: a good summary of the input

Output Yt-1 YVt
Decoder e § S =
hidden states ol t C: = z agih; Context vector for output y;
D ay; = align(y, x;) How well y; and x; are aligned
Encoder %\ __ ©xp (score(si-1, 1)) Softmax of some predefined
hidden states 1 h2 hn 211;1:1 exp (SCOT'e (St—l' hk)) align ment score
I X I Can be parametrized by
Hidden layer a feed-forward network
jointly trained with other
parts of the model
Input X1 Xo Xn 49



The attention weights {a;;} somehow indicate how much of each input
feature contributes to each output

Output cee yt—l ces yt cee

v' Simple, fast
v No additional computation

50



Self-attention mechanism

With context / ’
information

Self-attention

Input or hidden X, X,

representations



Self-attention mechanism

With context /
information

Input or hidden

X1
) X1
representatlons .

Self-attention



Self-attention mechanism

Query: q
Key: k
Value: v

q: k,
X1
q: = Wix,

ks

|

k3 = ka3

k,

|

k4_ —_ ka4_



Attention

Self-attention mechanism

Query: q
Key: k
Value: v

a4 a, as a,
SNe—xn—v— 1\  \
q: k4 k, k- k,
L I I I

X1 X> X3 X4
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Attention

Self-attention mechanism

Query: q
Value: v t 1 ! !
Softmax
! l | !
MLL
q: k, Tz ks k.,
X1 X2 X3 X4
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Attention

Self-attention mechanism

Query: q /""---———————~|—-__:A‘;t.lie_n_ti_o_n_\_lv_e_ig_h_t ________ N
Key: k E all azl a3’ a4’ E Sumto 1
Value: v B A feommmmoes e 12--
Softmax
1 l | !
Mll
ql kl k2 k3 k4
X1 X2 X3 X4
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Attention

Self-attention mechanism

Query: q
Key: k
Value: v

aq
q: ki vy
8
X1
q: = Wix,
k1 - kal

57



Attention

Self-attention mechanism

Query: q
Key: k
Value: v

58



Self-attention mechanism

With context / ’
information

Input or hidden
representations

Attention(K,V,Q) = softmax (Q

Vn

K)V



Attention

Composite embeddings based on attentions

the | 0.6 |-0.7 | 0.2 | -0.1

N

0.5 x

0.3 x

0.2 x

the | 0.6

-0.1

dog | 09

0.5

ran | 0.4

-0.4

0.4

-0.5

03 |-12| 04 | 0.1

S

the

dog

ran

0.4 x

0.1 x

0.5 %

Source: https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

the

dog

0.6

-0.7

0.2

-0.1

0.9

-0.6

0.6

0.5

0.3
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0.4

0.1

1l

-0.6

-0:1

0.9
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0.3

0.5

-1.3

/
\
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ran

0.2 x

0.7 x

0.1 x
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Attention

Consider the last attention layer for model interpretation

o = = = == ===

- - - - - ———

P

Linear

Concat

s
Scaled Dot-Product J& "
Attention N

1AM ) I—1

A

[ (Line.ar],}[ ’Line:alr ]J [ T_inear]}
Yy

i

Multi-Head Attention

P el

Output
Probabilities

Add & Norm

Feed
Forward

J/

Transformer

1
|
1
1
1
1
1
1
1
1
! ((Add & Norm J~
1
| Add & Norm Mult-Head
I Feed Attention
| Forward Nx
| _‘
1 Add & Norm
1 N> Add & Norm Ncked
1 . ;
, Multi-Head Multi-Head
< | [ Attention Attention
1 AN A AN
| o 7 \ )
: Positiona Positional
Encoding D & odin
1 coding Encoding
| Input Output
|‘ Embedding Embedding
\
nputs Outputs
(shifted right)
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Question?
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|s Attention Interpretable?

Sofia Serrano, Noah A. Smith

(ACL, 2019)



Attention for Explanation

Attention weights can be highly inconsistent with model prediction

Input  x; x, .. Xn

_______________________

Sumto 1l

64



* Explanation I: a ranking of importance of the attention layer’s input representations

* Exam the impact of some contextualized inputs to an attention layer, I' I, on the model’s output



Intermediate Representation Erasure

* Explanation I: a ranking of importance of the attention layer’s input representations

* Exam the impact of some contextualized inputs to an attention layer, I' I, on the model’s output

* Running the model twice: once without any modification, once with the attention weights of I

zeroed out

Input w1 w2 w3 wy ws wg w7 wg

¥

Part 1 of model

Computed v
attention
distribution l

Part 2 of model

Original __ l
softmax I

output p '

. i

Zero out
some weights

-----

-

-
~
I o

Renormalize
v

Part 2 of model
l Softmax
T-:. output g
using
a modified
g attention

-

Importance calculated from change in output
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Intermediate Representation Erasure

Evaluate model prediction change

e Jensen-Shannon (JS) divergence between

output distributions p and g, Input (R ERE
¥
1 1 Part 1 of model £ o
some weights
JS(P|Q) = =KL(P|M) + - KL(Q|M) RNt it
" % 2 Computed V¥ }," vy
attention -
M==-p+= BT
2 + 2 Q distribution l Renor;nalize
Part 2 of model Part 2 of model
* Difference between the argmaxes of p and gy, | | Sofmax
ici i Original
(deCISIOH ﬂlp) ~ofimey NI . 3:::; qr
oupmE. i 4 modified
attention

‘‘‘‘‘
-----------

Importance calculated from change in output
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Remove the component i* € [ with the highest attention weight ;- JS(p, q1%)

Comparison: a random component r drawn from [ ]5(}9, q{r})



Single Attention Weight Importance

Remove the component i* € | with the highest attention weight «;- JS(p, q1%)

Comparison: a random component r drawn from [

VIS =JS(p,quy) — ISP, q¢y)

NGRS,

Indicate how important i*
is wrt 7. Intuitively, if

Va = a;+ — a, is larger,
V]S should be larger.
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Single Attention Weight Importance

Remove the component i* € | with the highest attention weight «;- JS(p, q1%)

Comparison: a random component r drawn from [

v/S

Difference in JS Divergences from

Original Output Distribution

0.4

0.2

0.0

0.4

0.2

0.0

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Difference in Zeroed Attention Weight Magnitudes

VIS =JS(p,quy) — ISP, q¢y)

Dataset = Yahoo Dataset = IMDB

> ettt T, & ™

Dataset =

-t

Amazon Dataset = Yelp

S

Va = a; — a,

NGRS,

v If i* is more important, VJS is larger

v When VJS is small (close to 0), Va tends
to be small

(i* and r are nearly “tied” in attention)
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Single Attention Weight Importance

Remove the component i* € | with the highest attention weight «;- JS(p, q1%)

Comparison: a random component r drawn from [

v/S

VIS =JS(p,quy) — ISP, q¢y)

Dataset = Yahoo Dataset = IMDB
0.4

E
£ c
b
o+ 02
0 3
c o
(T == -
mu rd N e N
55 00 TR —
4 & 5 g
— g
o3 Dataset = Amazon Dataset = Yelp
25 04
0O
§ 2

o 0.2
55
O 00 r———— —

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Difference in Zeroed Attention Weight Magnitudes

Va = a; — a,

NGRS,

v If i* is more important, VJS is larger

v When VJS is small (close to 0), Va tends
to be small

(i* and r are nearly “tied” in attention)
v' When Va is about 0.4, VJS is still close to 0

How much the attention
weight can express the

importance of a feature?
71



Single Attention Weight Importance

Decision flips caused by zeroing attention

Remove the component i* € [ with the highest attention weight a;+

Comparison: a random component r drawn from [

Remove :*: Decision flip?

Yes

Z
)

Yes

Z
S

Remove random: Decision flip?

Yahoo
Yes No
05 | 8.7
1.3 | 89.6

Amazon
Yes No
2.7 EES
2.7 | 87.1

Yes
No

Yes
No

IMDB
Yes No
2.2
14 | 84.2

Yelp
Yes No
1.5 89
. 87.7

Intuitively, upper-right values
should be much larger than
lower-left values
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Decision flips caused by zeroing attention

Remove the component i* € [ with the highest attention weight a;+

Comparison: a random component r drawn from [

Remove :*: Decision flip?

Yes

Z
S

Yes

Z
S

Remove random: Decision flip?

Yahoo
Yes No
05 | 8.7
1.3 | 89.6

Amazon
Yes No
27 | 1.6
2.7 | 87.1

Yes
No

Yes
No

IMDB
Yes No
2.2 i
14 | 84.2

Yelp
Yes No
1.5 8.9
1.9 | 87.7

v Upper-right values are larger than lower-left
values (removing i* is easier to flip decision)
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Single Attention Weight Importance

Decision flips caused by zeroing attention

Remove the component i* € [ with the highest attention weight a;+

Comparison: a random component r drawn from [

Remove :*: Decision flip?

Yes

Z
)

Yes

Z
S

Remove random: Decision flip?

Yahoo
Yes No
05 | 8.7
1.3 [ 89.6
Amazon
Yes No
27 | 1.6
2] 87 L

Yes
No

Yes
No

IMDB

Yes No
2.2 pEES
14 842
Yelp

Yes No
1.5 89
1.9 '87.7"

v Upper-right values are larger than lower-left
values (removing i* is easier to flip decision)

v In most cases (lower-right values), erasing
1™ does not change the decision

The highest attention weight indicates
the most important feature?
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Single Attention Weight Importance

_____

I | aq ap, a3 ag - an

_____

(descending order of importance)
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Single Attention Weight Importance

(
I 'a; a; as ag v ap
\

4
I LN ]
I Qp Qy Az Oy an

————————————————

Intuitively, the top items in a truly useful
ranking of importance would comprise a
minimal necessary set of information for
making the model’s decision

(descending order of importance)

(descending order of importance)
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Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model’s decision changes

I & @y @&z a4 - a, == Prediction change



Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model’s decision changes

I & @y @&z a4 - a, == Prediction change

I, e & a3 a4 - @, == Prediction change

(Alternative rankings

of importance)
Attention may not be a good
interpretation method

78



Importance of Sets of Attention Weights

Baselines

 Random rankings

* Gradients

* Gradients X Attentions

Fractions of original components removed before first
decision flip under different importance rankings

FLANconvs

;j: — o v Both a high attention weight and
bep i ?ETZ?‘?'.,G a high calculated gradient indicate
0.25 an important component

2 E

0.00

Yahoo IMDB Amazon Yelp

79



Lipton (2016) describes a model as “transparent”:
a person can contemplate the entire model at once

!

Explanations are concise

X

Attention suggests a large part of features as “important”
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Question?
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