

# **CS 4501/6501 Interpretable Machine Learning**

### **Post-hoc explanations: gradient/attention-based methods**

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

### **Perturbation-based methods**



- Model-agnostic (black-box)
- Perturbing the input and observing model prediction change
- Extracting relationships between input features and the output

### **Perturbation-based methods**



- Model-agnostic (black-box)
- Perturbing the input and observing model prediction change
- Extracting relationships between input features and the output

- Applicable to any black-box models
- Computational complexity

### Additional information from the model



- Model-dependent (white-box)
- Additional information: gradients, attentions
- Simple, fast, efficient
- Not applicable if no such information available

• Gradient-based methods

• Attention-based methods

The gradient of a function f on  $x \in \mathbb{R}^n$  is



0-

The gradient of a function f on  $x \in \mathbb{R}^n$  is













- $x_1$  is more important than  $x_2$
- ✓ Changing  $x_1$  can flip the model prediction
- ✓ Changing x<sub>2</sub> would not influence the model prediction

Problem 1: saturated outputs lead to unintuitive gradients

$$y = \begin{cases} x_1 + x_2, & when (x_1 + x_2) < 1 \\ 1, & when (x_1 + x_2) \ge 1 \end{cases}$$



Problem 2: discontinuous gradients (e.g., thresholding) are problematic



y = max(0, x - 10)

(Shrikumar et al., 2017)

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

y = max(0, x - 10)



Need to replace "Relu" with "Softplus" activation



(Shrikumar et al., 2017)

Problem 3: input gradient is sensitive to slight perturbations



Problem 3: input gradient is sensitive to slight perturbations

Input gradients are misleading, resulting in a noisy saliency map



(Smilkov et al., 2017)

### Do NOT rely on a single gradient calculation

• SmoothGrad: add gaussian noise to inputs and average the gradients

(Smilkov et al., 2017)



### Do NOT rely on a single gradient calculation

• SmoothGrad: add gaussian noise to inputs and average the gradients

(Smilkov et al., 2017)



 Integrated Gradients: average gradients along a path from baseline to the input (Sundararajan et al., 2017)



### Do NOT rely on a single gradient calculation

• SmoothGrad: add gaussian noise to inputs and average the gradients

(Smilkov et al., 2017)



 Integrated Gradients: average gradients along a path from baseline to the input (Sundararajan et al., 2017)



### Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qiqi Yan

(ICML, 2017)

• Sensitivity

For every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution



Prediction

Positive

Negative

• Sensitivity

### Gradients violate Sensitivity







The output changes 1, while the gradient method gives attribution of 0 to x

• Implementation invariance

The attributions are always identical for two functionally equivalent networks

The outputs of two networks are equal for all inputs, despite having very different implementations  $f(h_1(x)) = f(h_2(x))$ 

• Implementation invariance

The attributions are always identical for two functionally equivalent networks



Gradients are invariant to implementation

The chain-rule for gradients is essentially about implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$



• Implementation invariance

The attributions are always identical for two functionally equivalent networks



Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$



• Implementation invariance

The attributions are always identical for two functionally equivalent networks



Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}$$



Some methods (e.g., LRP and DeepLift) do not satisfy the implementation invariance



#### Get samples along the straight line from x' to x

- *f*: neural network
- $x \in \mathbb{R}^n$ : input
- $x' \in \mathbb{R}^n$  : baseline
  - (e.g., black image, zero embedding vector)



#### Compute gradients at all points along the path

- *f*: neural network
- $x \in \mathbb{R}^n$ : input
- $x' \in \mathbb{R}^n$  : baseline
  - (e.g., black image, zero embedding vector)



- Integrated Gradients
  - *f*: neural network
  - $x \in \mathbb{R}^n$ : input
  - $x' \in \mathbb{R}^n$  : baseline
    - (e.g., black image, zero embedding vector)

#### **Cumulate these gradients**



On the  $i^{th}$  dimension

#### **Axiom: completeness**

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\boldsymbol{x}) = f(\boldsymbol{x}) - f(\boldsymbol{x}')$$

#### **Axiom: completeness**

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\boldsymbol{x}) = f(\boldsymbol{x}) - f(\boldsymbol{x}')$$

Sensitivity: for every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution

#### **Axiom: completeness**

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\boldsymbol{x}) = f(\boldsymbol{x}) - f(\boldsymbol{x}')$$

Sensitivity: for every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution



Sensitivity



Implementation invariance

#### **Axiom: completeness**

The attributions add up to the difference between the output of f at the input x and the baseline x'

$$\sum_{i=1}^{n} IG_i(\mathbf{x}) = f(\mathbf{x}) - \frac{f(\mathbf{x}')}{f(\mathbf{x}') \approx 0}$$

Shapley  $g(z) = \phi_0 + \sum_{i=1}^n \phi_i z_i$ 

## **Question?**

• Uniqueness of Integrated Gradients

Each path yields a different attribution method



$$PathIG_{i}(\boldsymbol{x}) = \int_{\alpha=0}^{1} \frac{\partial f(\gamma(\alpha))}{\partial \gamma_{i}(\alpha)} \frac{\partial \gamma_{i}(\alpha)}{\partial \alpha} d\alpha$$
$$\gamma(\alpha): \text{ path function, } \gamma(0) = \boldsymbol{x}', \gamma(1) = \boldsymbol{x}$$

IG is the straight path:  $\gamma(\alpha) = x' + \alpha(x - x')$  • Uniqueness of Integrated Gradients

Each path yields a different attribution method



$$PathIG_{i}(\boldsymbol{x}) = \int_{\alpha=0}^{1} \frac{\partial f(\gamma(\alpha))}{\partial \gamma_{i}(\alpha)} \frac{\partial \gamma_{i}(\alpha)}{\partial \alpha} d\alpha$$

$$\gamma(\alpha)$$
: path function,  $\gamma(0) = x'$ ,  $\gamma(1) = x$ 



#### Sensitivity



Implementation invariance
• Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?



✓ The simplest path

✓ Preserving symmetry

For all inputs and baselines that have identical values for <u>symmetric variables</u>, the symmetric variables receive identical attributions

Swapping the two variables does not change the function f(x, y) = f(y, x) • Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?



 $\checkmark$  The simplest path

✓ Preserving symmetry

For all inputs and baselines that have identical values for symmetric variables, the symmetric variables receive identical attributions

#### Example

 $logistic\_regression(x_1 + x_2)$ Input:  $x_1 = x_2 = 1$ Baseline:  $x_1 = x_2 = 0$  $Attr(x_1) = Attr(x_2)$  • Uniqueness of Integrated Gradients

Why the straightline path chosen by integrated gradients is canonical?



 $\checkmark$  The simplest path

✓ Preserving symmetry

For all inputs and baselines that have identical values for symmetric variables, the symmetric variables receive identical attributions

#### Example

 $logistic_regression(x_1 + x_2)$ 

Input:  $x_1 = x_2 = 1$ Baseline:  $x_1 = x_2 = 0$ 

 $Attr(x_1) = Attr(x_2)$ 

#### • Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

$$IG_i(\mathbf{x}) \approx (x_i - x_i') \times \sum_{k=1}^m \frac{\partial f\left(\mathbf{x}' + \frac{k}{m}(\mathbf{x} - \mathbf{x}')\right)}{\partial x_i} \times \frac{1}{m}$$

*m*: the number of steps

#### • Applications of Integrated Gradients

Task: object recognition Model: GoogleNet Dataset: ImageNet

Integrated gradients are better at reflecting distinctive features of the input image



Top label: reflex camera

Score: 0.993755

Top label and score

Top label: fireboat Score: 0.999961

# Integrated gradients Gradients at image

# **Question?**

# **Explaining Black-box Model**

• Gradient-based methods

• Attention-based methods

#### What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few things while ignoring others



Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

#### What is attention?

In psychology, attention is the cognitive process of selectively concentrating on one or a few things while ignoring others



The attention mechanism for neural networks is to mimic human brain actions in a simplified manner

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

Light up natural language procession (NLP)

Transformer **BERT** Output Probabilities Text Prediction Softmax Task Classification Text Start Classifie T<sub>2</sub> TN ... Linear Entailment Start Layer Norm Trm Trm Trm ... Add & Norm . Feed Start Feed Forward Forward Similarity 12x Start Trm Trm Trm Add & Norm ... Layer Norm Add & Norm Multi-Head Feed Start Attention Masked Multi Forward N× Self Attention Multiple Choice Start E. EN Add & Norm N× Start Add & Norm Text & Position Embed Masked Multi-Head Multi-Head Attention Attention Positional 0 Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)

#### **GPT**



(Vaswani et al., 2017)

(Devlin et al., 2018)

(Radford et al., 2018)

Context vector: a good summary of the input



Context vector: a good summary of the input



Context vector: a good summary of the input



The attention weights  $\{\alpha_{ti}\}$  somehow indicate how much of each input feature contributes to each output



✓ Simple, fast✓ No additional computation

#### Self-attention mechanism



#### Self-attention mechanism



Self-attention mechanism



Self-attention mechanism



#### Self-attention mechanism





56

Self-attention mechanism



#### Self-attention mechanism



#### Self-attention mechanism



Attention(K,V,Q) = softmax  $\left(\frac{QK^{T}}{\sqrt{n}}\right)V$ 

#### Composite embeddings based on attentions





Consider the last attention layer for model interpretation



# **Question?**

#### Is Attention Interpretable?

Sofia Serrano, Noah A. Smith

(ACL, 2019)

# **Attention for Explanation**

Attention weights can be highly inconsistent with model prediction

Input
$$x_1$$
 $x_2$ ... $x_n$ Attention $a_1$  $a_2$ ... $a_n$ Sum to 1

# **Intermediate Representation Erasure**

- Explanation *I*: a ranking of importance of the attention layer's input representations
- Exam the impact of some contextualized inputs to an attention layer,  $I' \subset I$ , on the model's output

# **Intermediate Representation Erasure**

- Explanation *I*: a ranking of importance of the attention layer's input representations
- Exam the impact of some contextualized inputs to an attention layer,  $I' \subset I$ , on the model's output
- Running the model twice: once without any modification, once with the attention weights of *I*' zeroed out



# **Intermediate Representation Erasure**

#### **Evaluate model prediction change**

• Jensen-Shannon (JS) divergence between output distributions p and  $q_{I'}$ 

 $JS(P|Q) = \frac{1}{2}KL(P|M) + \frac{1}{2}KL(Q|M)$  $M = \frac{1}{2}P + \frac{1}{2}Q$ 

• Difference between the argmaxes of p and  $q_{I'}$  (decision flip)



Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 

 $JS(p,q_{\{i^*\}})$  $JS(p,q_{\{r\}})$ 

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 

 $\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$ 

Indicate how important  $i^*$ is wrt r. Intuitively, if  $\nabla \alpha = \alpha_{i^*} - \alpha_r$  is larger,  $\nabla JS$  should be larger.

 $JS(p,q_{\{i^*\}})$ 

 $JS(p,q_{\{r\}})$ 

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 



$$\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$$

$$JS(p,q_{\{i^*\}})$$
$$JS(p,q_{\{r\}})$$

- ✓ If  $i^*$  is more important,  $\nabla JS$  is larger
- ✓ When  $\nabla JS$  is small (close to 0),  $\nabla \alpha$  tends to be small
  - ( $i^*$  and r are nearly "tied" in attention)

$$\nabla \alpha = \alpha_{i^*} - \alpha_r$$

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 



$$\nabla JS = JS(p, q_{\{i^*\}}) - JS(p, q_{\{r\}})$$

✓ If 
$$i^*$$
 is more important,  $\nabla IS$  is larger

✓ When  $\nabla JS$  is small (close to 0),  $\nabla \alpha$  tends to be small

 $JS(p,q_{\{i^*\}})$ 

 $JS(p,q_{\{r\}})$ 

( $i^*$  and r are nearly "tied" in attention)

✓ When  $\nabla \alpha$  is about 0.4,  $\nabla JS$  is still close to 0

How much the attention weight can express the importance of a feature?

#### **Decision flips caused by zeroing attention**

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 



Intuitively, upper-right values should be much larger than lower-left values
### **Decision flips caused by zeroing attention**

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 



✓ Upper-right values are larger than lower-left values (removing  $i^*$  is easier to flip decision)

### **Decision flips caused by zeroing attention**

Remove the component  $i^* \in I$  with the highest attention weight  $\alpha_{i^*}$ 

**Comparison**: a random component *r* drawn from *I* 



- ✓ Upper-right values are larger than lower-left values (removing  $i^*$  is easier to flip decision)
- In most cases (lower-right values), erasing
  i\* does not change the decision

The highest attention weight indicates the most important feature?

$$I \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \alpha_2 = \alpha_3 = \alpha_4 = \cdots = \alpha_n$$
 (descending order of importance)



Intuitively, the top items in a truly useful ranking of importance would comprise a minimal necessary set of information for making the model's decision

## Importance of Sets of Attention Weights

#### Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model's decision changes



## Importance of Sets of Attention Weights

#### Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model's decision changes



# Importance of Sets of Attention Weights

### **Baselines**

- Random rankings
- Gradients
- Gradients × Attentions

Fractions of original components removed before first decision flip under different importance rankings



 Both a high attention weight and a high calculated gradient indicate an important component Lipton (2016) describes a model as "transparent": a person can contemplate the entire model at once

Explanations are concise



Attention suggests a large part of features as "important"

# **Question?**

## Reference

- Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. "Learning important features through propagating activation differences." *International conference on machine learning*. PMLR, 2017.
- Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." *International conference on machine learning*. PMLR, 2017.
- Serrano, Sofia, and Noah A. Smith. "Is attention interpretable?." *arXiv preprint arXiv:1906.03731* (2019).
- Smilkov, Daniel, et al. "Smoothgrad: removing noise by adding noise." *arXiv preprint arXiv:1706.03825* (2017).
- Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv* preprint arXiv:1810.04805 (2018).
- Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).