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Post-hoc explanations: gradient/attention-based methods
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Explaining Black-box Model

Black Box
Input Output
𝒙 𝒚

Perturbation-based methods

Interpreter

• Model-agnostic (black-box)
• Perturbing the input and observing 

model prediction change
• Extracting relationships between 

input features and the output
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Explaining Black-box Model

Black Box
Input Output
𝒙 𝒚

Perturbation-based methods

Interpreter

• Model-agnostic (black-box)
• Perturbing the input and observing 

model prediction change
• Extracting relationships between 

input features and the output

• Applicable to any black-box models
• Computational complexity
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Explaining Black-box Model

Model
Input Output
𝒙 𝒚

Additional information from the model

Interpreter

• Model-dependent (white-box)
• Additional information: gradients, 

attentions
• Simple, fast, efficient
• Not applicable if no such 

information available

(gradients, attentions)
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Explaining Black-box Model

• Gradient-based methods

• Attention-based methods
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Gradient-based Explanation

The gradient of a function 𝑓 on 𝒙 ∈ ℝ! is

∇𝑓 𝒙 =

𝜕𝑓
𝜕𝑥"
⋮
𝜕𝑓
𝜕𝑥!

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0
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Gradient-based Explanation

The gradient of a function 𝑓 on 𝒙 ∈ ℝ! is

∇𝑓 𝒙 =

𝜕𝑓
𝜕𝑥"
⋮
𝜕𝑓
𝜕𝑥!

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0

The derivative #$#%!
indicates how 

much 𝑓 will change when 𝑥&
increases a little bit
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Gradient-based Explanation

Model 𝑓⋮

𝑥"
𝑥'
𝑥!

𝒙

𝑓 𝒙

Gradient𝜕𝑓
𝜕𝑥"

𝜕𝑓
𝜕𝑥!

⋮ ⋮
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Gradient-based Explanation

Model 𝑓⋮

𝑥"
𝑥'
𝑥!

𝒙

𝑓 𝒙

Gradient𝜕𝑓
𝜕𝑥"

𝜕𝑓
𝜕𝑥!

⋮ ⋮

Feature importance

The influence of “tiny change” to the 
feature on the model prediction
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Gradient-based Explanation

Model 𝑓⋮

𝑥"
𝑥'
𝑥!

𝒙

𝑓 𝒙

Gradient𝜕𝑓
𝜕𝑥"

𝜕𝑓
𝜕𝑥!

⋮ ⋮ ü One backpropagation
ü Simple, fast
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Gradient-based Explanation

𝑥"

𝑥'

𝒙

𝑥" is more important than 𝑥'

∇!!𝑓

∇!"𝑓 ü Changing 𝑥! can flip the model prediction

ü Changing 𝑥" would not influence the 
model prediction
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Gradient-based Explanation

Problem 1: saturated outputs lead to unintuitive gradients

(Shrikumar et al., 2017)

𝑦 = ,𝑥" + 𝑥', 𝑤ℎ𝑒𝑛 𝑥" + 𝑥' < 1
1, 𝑤ℎ𝑒𝑛 𝑥" + 𝑥' ≥ 1

𝑥" + 𝑥'

𝑦

0 1 2

1

𝑥! = 1, 𝑥" = 1
The gradient on 𝑥! or 𝑥" is 
0, but that does not mean 
neither is important
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

(Shrikumar et al., 2017)

𝑥

𝑦

0 10

𝑦 = 𝑚𝑎𝑥 0, 𝑥 − 10

The gradient changes dramatically
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

(Shrikumar et al., 2017)

𝑥

𝑦

0 10

𝑦 = 𝑚𝑎𝑥 0, 𝑥 − 10

The gradient changes dramatically

Need to replace “Relu” with 
“Softplus” activation



15

Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

𝑥"

𝑥'

𝒙
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Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

(Smilkov et al., 2017)

Input gradients are misleading, resulting in a noisy saliency map
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models

• Integrated Gradients: average gradients 
along a path from baseline to the input

(Sundararajan et al., 2017)
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models

• Integrated Gradients: average gradients 
along a path from baseline to the input

(Sundararajan et al., 2017)
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IG

Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qiqi Yan

(ICML, 2017)
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Two Fundamental Axioms
• Sensitivity

For every input and baseline that differ in one feature but have different 
predictions then the differing feature should be given a non-zero attribution

Input

a

clever

piece

of

cinema

𝒙!

𝒙"

𝒙#

𝒙$

𝒙%

Baseline

a

clever

piece

of

cinema

𝒙!

𝒙#

𝒙$

𝒙%

Prediction Positive Negative

𝑎" = 0.46clever

Attribution

(𝑎" ≠ 0)
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Two Fundamental Axioms
• Sensitivity

Gradients violate Sensitivity

𝑦 = ,𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 1
1, 𝑤ℎ𝑒𝑛 𝑥 ≥ 1

𝑥

𝑦

0 1 2

1

Input

𝑥 = 2

Baseline

𝑥 = 0

The output changes 1, while the 
gradient method gives attribution 
of 0 to 𝑥

Output

𝑦 = 1

𝑦 = 0
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Two Fundamental Axioms
• Implementation invariance

The attributions are always identical for two functionally equivalent networks

The outputs of two networks are 
equal for all inputs, despite having 
very different implementations

𝑓 ℎ" 𝑥 = 𝑓 ℎ' 𝑥
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Two Fundamental Axioms
• Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essentially about implementation invariance: 

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕ℎ

;
𝜕ℎ
𝜕𝑔

;
𝜕𝑔
𝜕𝑥 𝑥 𝑓 𝑥𝑔 ℎ
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Two Fundamental Axioms
• Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance: 

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕ℎ

;
𝜕ℎ
𝜕𝑔

;
𝜕𝑔
𝜕𝑥 𝑥 𝑓 𝑥𝑔 ℎ
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Two Fundamental Axioms
• Implementation invariance

The attributions are always identical for two functionally equivalent networks

Gradients are invariant to implementation

The chain-rule for gradients is essential for implementation invariance: 

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕ℎ

;
𝜕ℎ
𝜕𝑔

;
𝜕𝑔
𝜕𝑥 𝑥 𝑓 𝑥𝑔 ℎ

Some methods (e.g., LRP and DeepLift) do 
not satisfy the implementation invariance 
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IG
• Integrated Gradients

𝑓: neural network

𝒙 ∈ ℝ!: input

𝒙′ ∈ ℝ! : baseline
(e.g., black image, zero 
embedding vector)

𝒙′

𝒙

Get samples along the straight line from 𝒙′ to 𝒙

𝒙& + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1
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IG
• Integrated Gradients

𝑓: neural network

(e.g., black image, zero 
embedding vector)

𝒙′

𝒙

Compute gradients at all points along the path 

𝒙& + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1

𝒙 ∈ ℝ!: input

𝒙′ ∈ ℝ! : baseline
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IG
• Integrated Gradients

𝑓: neural network

(e.g., black image, zero 
embedding vector)

𝒙′

𝒙

Cumulate these gradients

𝒙& + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1

𝐼𝐺' 𝒙 = 𝑥' − 𝑥'′ ×7
()*

! 𝜕𝑓 𝒙& + 𝛼 𝒙 − 𝒙’
𝜕𝑥'

𝑑𝛼

On the 𝑖+, dimension

𝒙 ∈ ℝ!: input

𝒙′ ∈ ℝ! : baseline
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙
and the baseline 𝒙′

<
')!

-

𝐼𝐺' 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙
and the baseline 𝒙′

<
')!

-

𝐼𝐺' 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′
Sensitivity: for every input and 
baseline that differ in one feature 
but have different predictions 
then the differing feature should 
be given a non-zero attribution
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙
and the baseline 𝒙′

<
')!

-

𝐼𝐺' 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′
Sensitivity: for every input and 
baseline that differ in one feature 
but have different predictions 
then the differing feature should 
be given a non-zero attribution

Sensitivity

Implementation invariance
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙
and the baseline 𝒙′

<
')!

-

𝐼𝐺' 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′

𝑓 𝒙′ ≈ 0

Shapley

𝑔 𝑧 = 𝜙* + ∑')!- 𝜙'𝑧'
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Question?
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IG
• Uniqueness of Integrated Gradients

𝒙′

𝒙

Each path yields a different attribution method

𝑃𝑎𝑡ℎ𝐼𝐺' 𝒙 = 7
()*

! 𝜕𝑓 𝛾 𝛼
𝜕𝛾' 𝛼

𝜕𝛾' 𝛼
𝜕𝛼

𝑑𝛼

𝛾 𝛼 : path function, 𝛾 0 = 𝒙′, 𝛾 1 = 𝒙

IG is the straight path:

𝛾 𝛼 = 𝒙" + 𝛼 𝒙 − 𝒙’
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IG
• Uniqueness of Integrated Gradients

𝒙′

𝒙

Each path yields a different attribution method

𝑃𝑎𝑡ℎ𝐼𝐺' 𝒙 = 7
()*

! 𝜕𝑓 𝛾 𝛼
𝜕𝛾' 𝛼

𝜕𝛾' 𝛼
𝜕𝛼

𝑑𝛼

𝛾 𝛼 : path function, 𝛾 0 = 𝒙′, 𝛾 1 = 𝒙

Sensitivity

Implementation invariance



37

IG
• Uniqueness of Integrated Gradients

𝒙′

𝒙

Why the straightline path chosen by integrated gradients is canonical?

ü The simplest path
ü Preserving symmetry

For all inputs and baselines that have identical 
values for symmetric variables, the symmetric 
variables receive identical attributions

Swapping the two variables 
does not change the function

𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)
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IG
• Uniqueness of Integrated Gradients

𝒙′

𝒙

Why the straightline path chosen by integrated gradients is canonical?

ü The simplest path
ü Preserving symmetry

For all inputs and baselines that have identical 
values for symmetric variables, the symmetric 
variables receive identical attributions

Example

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑥# + 𝑥$)

Input: 𝑥# = 𝑥$ = 1
Baseline: 𝑥# = 𝑥$ = 0

𝐴𝑡𝑡𝑟(𝑥#) = 𝐴𝑡𝑡𝑟(𝑥$)
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IG
• Uniqueness of Integrated Gradients

𝒙′

𝒙

Why the straightline path chosen by integrated gradients is canonical?

ü The simplest path
ü Preserving symmetry

For all inputs and baselines that have identical 
values for symmetric variables, the symmetric 
variables receive identical attributions

Example

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑥# + 𝑥$)

Input: 𝑥# = 𝑥$ = 1
Baseline: 𝑥# = 𝑥$ = 0

𝐴𝑡𝑡𝑟(𝑥#) = 𝐴𝑡𝑡𝑟(𝑥$)
Theorem: IG is the unique 
path method that is 
symmetry-preserving
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IG
• Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

𝐼𝐺' 𝒙 ≈ 𝑥' − 𝑥'′ ×<
.)!

/ 𝜕𝑓 𝒙& + 𝑘
𝑚 𝒙 − 𝒙’

𝜕𝑥'
×
1
𝑚

𝑚: the number of steps



41

IG
• Applications of Integrated Gradients

Task: object recognition
Model: GoogleNet
Dataset: ImageNet

Integrated gradients 
are better at reflecting 
distinctive features of 
the input image
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Question?
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Explaining Black-box Model

• Gradient-based methods

• Attention-based methods
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Attention

What is attention?

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-
mechanism-deep-learning/

In psychology, attention is the cognitive process of selectively concentrating on one or a few 
things while ignoring others



45

Attention

What is attention?

Source: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-
mechanism-deep-learning/

In psychology, attention is the cognitive process of selectively concentrating on one or a few 
things while ignoring others

The attention mechanism 
for neural networks is to 
mimic human brain actions 
in a simplified manner
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Attention

Light up natural language procession (NLP)

Transformer

(Vaswani et al., 2017)

BERT

(Devlin et al., 2018)

GPT

(Radford et al., 2018)
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Attention

Context vector: a good summary of the input

Hidden layer

⋮

𝑥" 𝑥' 𝑥!

⋮

𝒉" 𝒉' 𝒉!

⨁

𝒄C
𝒔C⋮ ⋮𝒔CD"

𝑦CD" 𝑦C

Input

Output

Encoder 
hidden states

Decoder 
hidden states
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Attention

Context vector: a good summary of the input

Hidden layer

⋮

𝑥" 𝑥' 𝑥!

⋮

𝒉" 𝒉' 𝒉!

⨁

𝒄C
𝒄+ =<

')!

-

𝛼+'𝒉'

𝛼+' = 𝑎𝑙𝑖𝑔𝑛 𝑦+, 𝑥'

=
𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝒔+0!, 𝒉'

∑.)!- 𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝒔+0!, 𝒉.

𝒔C⋮ ⋮𝒔CD"

𝑦CD" 𝑦C

Context vector for output 𝑦+

How well 𝑦+ and 𝑥' are aligned   

Softmax of some predefined 
alignment score

Input

Output

Encoder 
hidden states

Decoder 
hidden states
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Attention

Context vector: a good summary of the input

Hidden layer

⋮

𝑥" 𝑥' 𝑥!

⋮

𝒉" 𝒉' 𝒉!

⨁

𝒄C
𝒄+ =<

')!

-

𝛼+'𝒉'

𝛼+' = 𝑎𝑙𝑖𝑔𝑛 𝑦+, 𝑥'

=
𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝒔+0!, 𝒉'

∑.)!- 𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝒔+0!, 𝒉.

𝒔C⋮ ⋮𝒔CD"

𝑦CD" 𝑦C

Context vector for output 𝑦+

How well 𝑦+ and 𝑥' are aligned   

Softmax of some predefined 
alignment score

Can be parametrized by 
a feed-forward network 
jointly trained with other 
parts of the model

Input

Output

Encoder 
hidden states

Decoder 
hidden states
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Attention

𝑥" 𝑥' 𝑥!

𝑦CD" 𝑦C

Input

Output

The attention weights 𝛼C& somehow indicate how much of each input 
feature contributes to each output

⋮

⋮ ⋮ ⋮

𝛼C" 𝛼C' 𝛼C! ü Simple, fast
ü No additional computation
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Attention

Self-attention mechanism 

Self-attention

⋮

𝒙" 𝒙' 𝒙!

⋮

Input or hidden 
representations

𝒙"′ 𝒙'′ 𝒙!′With context 
information
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Attention

Self-attention mechanism 

Self-attention

⋮

𝒙" 𝒙' 𝒙!

𝒙"′With context 
information

Input or hidden 
representations
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Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E
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Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E

𝜶" 𝜶' 𝜶F 𝜶E
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Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E

𝜶" 𝜶' 𝜶F 𝜶E

Softmax

𝜶"′ 𝜶'′ 𝜶F′ 𝜶E′



56

Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E

𝜶" 𝜶' 𝜶F 𝜶E

Softmax

𝜶"′ 𝜶'′ 𝜶F′ 𝜶E′ Sum to 1

Attention weight
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Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E

𝜶"′ 𝜶'′ 𝜶F′ 𝜶E′

𝒗" 𝒗' 𝒗F 𝒗E

𝒗! = 𝑊2𝒙!
𝒗" = 𝑊2𝒙" 𝒗# = 𝑊2𝒙# 𝒗$ = 𝑊2𝒙$
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Attention

Self-attention mechanism 

𝒙" 𝒙' 𝒙E

Query: 𝒒
Key: 𝒌
Value: 𝒗

𝒙F

𝒌"𝒒"

𝒒! = 𝑊1𝒙!
𝒌! = 𝑊.𝒙!

𝒌" = 𝑊.𝒙" 𝒌# = 𝑊.𝒙# 𝒌$ = 𝑊.𝒙$

𝒌' 𝒌F 𝒌E

𝜶"′ 𝜶'′ 𝜶F′ 𝜶E′

𝒗" 𝒗' 𝒗F 𝒗E

𝒗! = 𝑊2𝒙!
𝒗" = 𝑊2𝒙" 𝒗# = 𝑊2𝒙# 𝒗$ = 𝑊2𝒙$

⨂ ⨂ ⨂ ⨂

𝒙"′
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Attention

Self-attention mechanism 

Self-attention

⋮

𝒙" 𝒙' 𝒙!

⋮

Input or hidden 
representations

𝒙"′ 𝒙'′ 𝒙!′With context 
information 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐾, 𝑉, 𝑄 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑄𝐾%

𝑛
𝑉
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Attention

Composite embeddings based on attentions

Source: https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
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Attention

Consider the last attention layer for model interpretation

BERTTransformerMulti-Head Attention
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Question?
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Is Attention Interpretable?

Sofia Serrano, Noah A. Smith

(ACL, 2019)
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Attention weights can be highly inconsistent with model prediction

Attention for Explanation

𝑥" 𝑥' 𝑥!Input ⋮

Attention 𝑎" 𝑎' 𝑎!⋮

Sum to 1
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Intermediate Representation Erasure 
• Explanation 𝐼: a ranking of importance of the attention layer’s input representations

• Exam the impact of some contextualized inputs to an attention layer, 𝐼′ ⊂ 𝐼, on the model’s output
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Intermediate Representation Erasure 
• Explanation 𝐼: a ranking of importance of the attention layer’s input representations

• Exam the impact of some contextualized inputs to an attention layer, 𝐼′ ⊂ 𝐼, on the model’s output

• Running the model twice: once without any modification, once with the attention weights of 𝐼′
zeroed out
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Intermediate Representation Erasure 
Evaluate model prediction change

• Jensen-Shannon (JS) divergence between 
output distributions 𝑝 and 𝑞3&

• Difference between the argmaxes of 𝑝 and 𝑞3&
(decision flip) 

𝐽𝑆 𝑃 𝑄 =
1
2𝐾𝐿 𝑃 𝑀 +

1
2𝐾𝐿 𝑄 𝑀

𝑀 =
1
2
𝑃 +

1
2
𝑄
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Single Attention Weight Importance
Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

𝐽𝑆 𝑝, 𝑞 &∗

𝐽𝑆 𝑝, 𝑞 '
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Single Attention Weight Importance
Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

𝐽𝑆 𝑝, 𝑞 &∗

𝐽𝑆 𝑝, 𝑞 '

Indicate how important 𝑖∗
is wrt 𝑟. Intuitively, if 
∇𝛼 = 𝛼'∗ − 𝛼5 is larger, 
∇𝐽𝑆 should be larger.

∇𝐽𝑆 = 𝐽𝑆 𝑝, 𝑞 '∗ − 𝐽𝑆 𝑝, 𝑞 5
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Single Attention Weight Importance
Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

𝐽𝑆 𝑝, 𝑞 &∗

𝐽𝑆 𝑝, 𝑞 '

∇𝐽𝑆 = 𝐽𝑆 𝑝, 𝑞 '∗ − 𝐽𝑆 𝑝, 𝑞 5

∇𝐽𝑆

∇𝛼 = 𝛼&∗ − 𝛼'

ü If 𝑖∗ is more important, ∇𝐽𝑆 is larger

ü When ∇𝐽𝑆 is small (close to 0), ∇𝛼 tends 
to be small

(𝑖∗ and 𝑟 are nearly “tied” in attention) 
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Single Attention Weight Importance
Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

𝐽𝑆 𝑝, 𝑞 &∗

𝐽𝑆 𝑝, 𝑞 '

∇𝐽𝑆 = 𝐽𝑆 𝑝, 𝑞 '∗ − 𝐽𝑆 𝑝, 𝑞 5

∇𝐽𝑆

∇𝛼 = 𝛼&∗ − 𝛼'

ü If 𝑖∗ is more important, ∇𝐽𝑆 is larger

ü When ∇𝐽𝑆 is small (close to 0), ∇𝛼 tends 
to be small

(𝑖∗ and 𝑟 are nearly “tied” in attention) 

ü When ∇𝛼 is about 0.4, ∇𝐽𝑆 is still close to 0 

How much the attention 
weight can express the 
importance of a feature?



72

Single Attention Weight Importance
Decision flips caused by zeroing attention

Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

Intuitively, upper-right values 
should be much larger than 
lower-left values
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Single Attention Weight Importance
Decision flips caused by zeroing attention

Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

ü Upper-right values are larger than lower-left 
values (removing 𝑖∗ is easier to flip decision)
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Single Attention Weight Importance
Decision flips caused by zeroing attention

Remove the component 𝑖∗ ∈ 𝐼 with the highest attention weight 𝛼'∗

Comparison: a random component 𝑟 drawn from 𝐼

ü Upper-right values are larger than lower-left 
values (removing 𝑖∗ is easier to flip decision)

ü In most cases (lower-right values), erasing 
𝑖∗ does not change the decision

The highest attention weight indicates 
the most important feature?
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Single Attention Weight Importance

𝐼 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! (descending order of importance)
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Single Attention Weight Importance

𝐼 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! (descending order of importance)

𝐼 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! (descending order of importance)

Intuitively, the top items in a truly useful 
ranking of importance would comprise a 
minimal necessary set of information for 
making the model’s decision
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Importance of Sets of Attention Weights
Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model’s decision changes

𝐼 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! Prediction change
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Importance of Sets of Attention Weights
Test how multiple attention weights perform together as importance predictors

Erasing representations from the top of the ranking downward until the model’s decision changes

𝐼 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! Prediction change

𝐼" 𝛼" 𝛼' 𝛼F 𝛼E ⋮ 𝛼! Prediction change

(Alternative rankings 
of importance)

Attention may not be a good 
interpretation method
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Importance of Sets of Attention Weights
Baselines

• Random rankings
• Gradients
• Gradients × Attentions

ü Both a high attention weight and 
a high calculated gradient indicate 
an important component

Fractions of original components removed before first 
decision flip under different importance rankings
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Lipton (2016) describes a model as “transparent”:
a person can contemplate the entire model at once

Explanations are concise

Attention suggests a large part of features as “important”



81

Question?
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