

CS 4501/6501 Interpretable Machine Learning

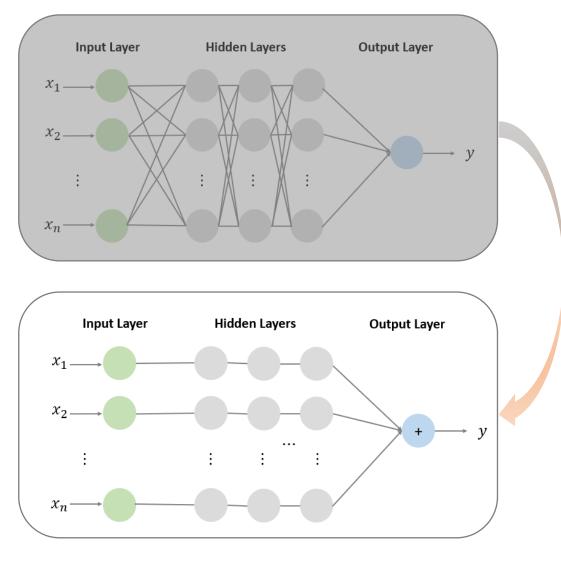
Post-hoc explanations: perturbation-based methods

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

Trade-off

Black-box Neural Network

Interpretable GAM



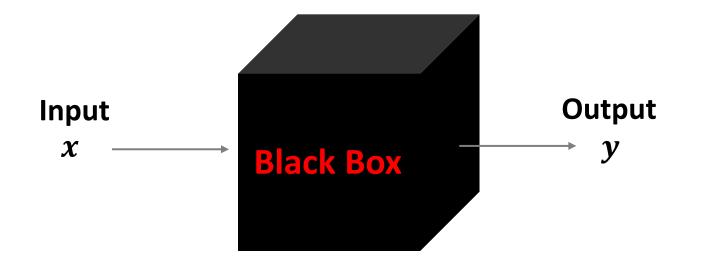
Limitations

- Ignoring complex feature interactions
- Performance drop

Explaining Black-box Model

How to improve model interpretability?

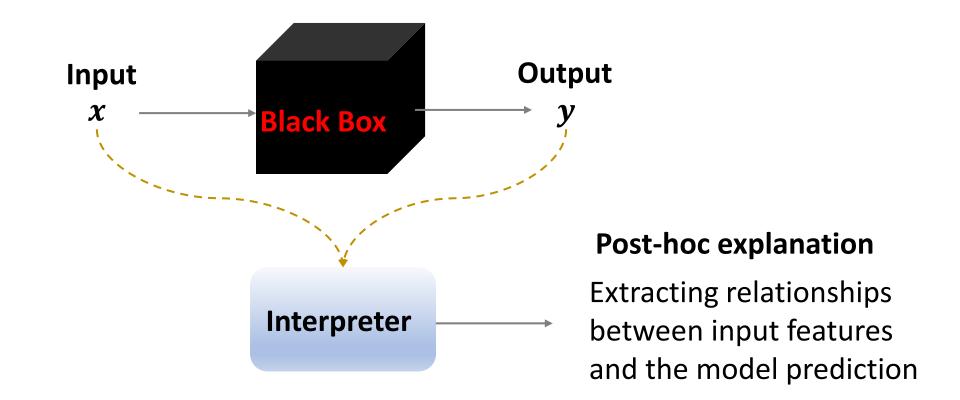
Model's inner working and decision making are hidden in the black box

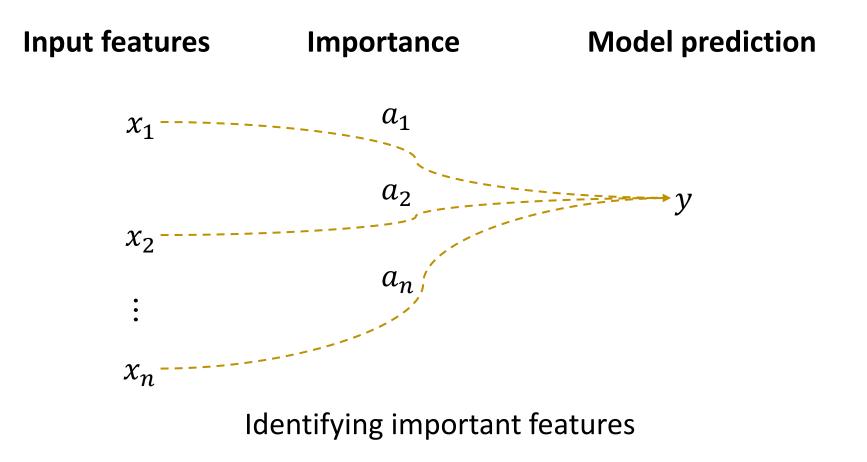


Explaining Black-box Model

How to improve model interpretability?

Explaining model predictions from the post-hoc manner





- Example 1: tabular data
 - Mushroom dataset
 - Task: predicting if a mushroom is edible or poisonous

Feature
Odor
gill size
stalk surface above ring
Spore print color
stalk surface below ring

- Example 1: tabular data
 - Mushroom dataset
 - Task: predicting if a mushroom is edible or poisonous

mput						LAPIANALION
	Feature	Value				Importance
	Odor=foul	$x_1 = 1$ (true)				$a_1 = 0.26$
	gill size=broad	$x_2 = 1$			Prediction	$a_2 = -0.13$
	stalk surface above ring=silky	<i>x</i> ₃ = 1		Model	poisonous	$a_3 = 0.11$
	Spore print color=chocolate	$x_4 = 1$				$a_4 = 0.08$
	stalk surface below ring=silky	$x_5 = 1$				$a_5 = 0.06$

Input

Explanation

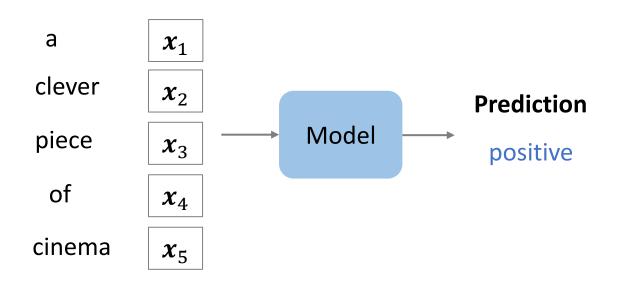
- Example 1: tabular data
 - Mushroom dataset -

Task: predicting if a mushroom is edible or poisonous -

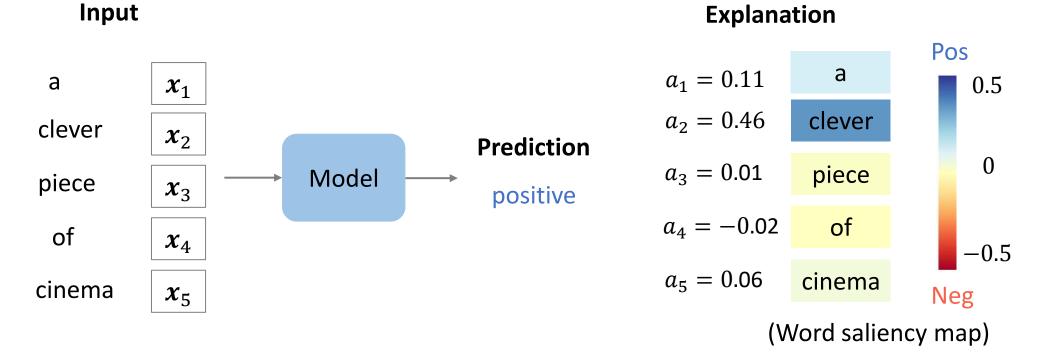
Input		Explanation				
Feature	Value				Importance	(the most
Odor=foul	$x_1 = 1$ (true)				$a_1 = 0.26$	important feature)
gill size=broad	$x_2 = 1$			Prediction	$a_2 = -0.13$	(indicating edible)
stalk surface above ring=silky	<i>x</i> ₃ = 1		Model	poisonous	$a_3 = 0.11$	
Spore print color=chocolate	$x_4 = 1$				$a_4 = 0.08$	
stalk surface below ring=silky	$x_{5} = 1$				$a_5 = 0.06$	

8

- Example 2: text data
 - Movie review
 - **Task**: predicting the sentiment of a text (positive or negative)



- Example 2: text data
 - Movie review
 - **Task**: predicting the sentiment of a text (positive or negative)



• Example 3: image data

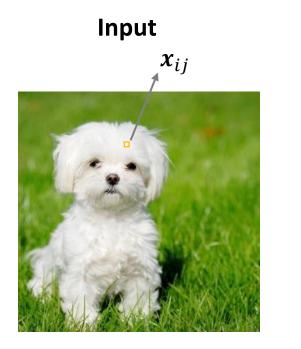
Task: Object recognition

Feature: a pixel x_{ij}

(color, intensity...)

• Example 3: image data

Task: Object recognition Prediction: Dog



Explanation *a_{ij}*

Saliency map: the lighter color, the larger value

How to learn feature importance?

Perturbation-based methods

- Model-agnostic (black-box): not requiring access to model inner working
- Local: explaining model prediction per example

Perturbation-based methods

• LIME (Ribeiro et al., KDD, 2016)

• SHAP (Lundberg and Lee, NIPS, 2017)

LIME

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

(KDD, 2016)

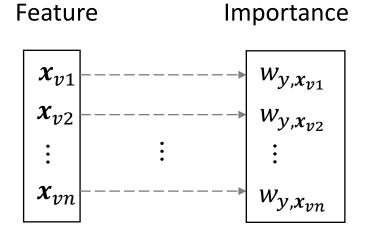
Interpretable Model

• Linear model

$$h_y(\boldsymbol{x}) = \boldsymbol{w}_y^T \boldsymbol{x} \quad \boldsymbol{x} \in \{0, 1\}^n$$

- $w_{y,j}$: the contribution of x_j
- Higher weights indicate more important features

Global interpretation



Interpretable Model

• Linear model

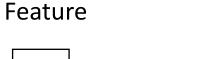
 $h_y(\boldsymbol{x}) = \boldsymbol{w}_y^T \boldsymbol{x} \qquad \boldsymbol{x} \in \{0, 1\}^n$

- $w_{y,j}$: the contribution of x_j
- Higher weights indicate more important features

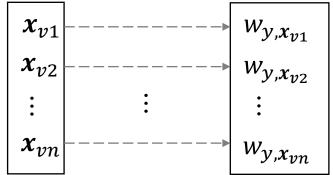
Logistic regression

	"It"	"is"	"a"	"fantastic"	"movie"				
[Neg] w ₀	0.89	0.72	1.13	"fantastic" -1.92	0.34	1.16			
[Pos] w ₁	0.85	0.82	1.05	2.21	0.26	5.19			
Prediction: positive									

Global interpretation



Importance



Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features and the response
- The meaning of a feature may vary across different examples

adjective Morally excellent "good" Possessions noun

Neural Networks

Global interpretation is not capable of explaining each specific model prediction

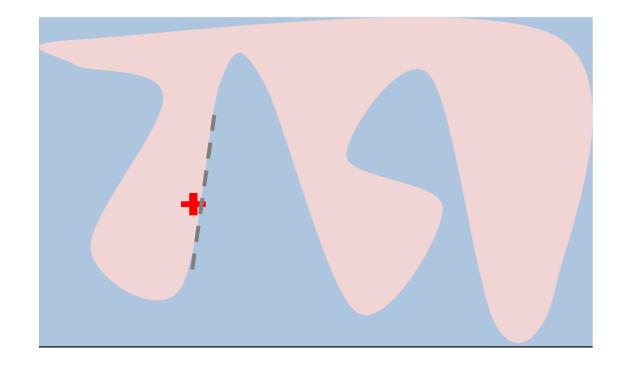
- Neural networks can capture complex relationships between features and the response
- The meaning of a feature may vary across different examples

adjective Morally excellent "good" Possessions noun

Local interpretation Explaining model prediction per example by identifying local feature importance

The way that explains model predictions or the generated explanations are understandable to humans

Idea: using local linear model to approximate neural network for each example



- Decision boundary of a neural network *f*
- Blue/pink background represents negative (-) /positive (+) class
- Bold red cross: the instance x being explained
- Dashed line: local linear model g

• Interpretable data representations

Neural network f

 $\boldsymbol{x} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n]$

Feature representation $x_i \in \mathbb{R}^d$ is uninterpretable

Linear model g

$$\boldsymbol{x}' = [x'_1, x'_2, \cdots, x'_N]$$

Feature representation $x'_i \in \{0, 1\}$ is interpretable

- *n*: the number of features in the example
- *N*: the number of all features

• Interpretable data representations

Neural network f

 $\boldsymbol{x} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_n]$

Feature representation $x_i \in \mathbb{R}^d$ is uninterpretable

Image

 x_i : a tensor with three color channels per pixel

Text

*x*_{*i*}: a high-dimensional vector (word embedding)

Linear model g

$$\boldsymbol{x}' = [x'_1, x'_2, \cdots, x'_N]$$

Feature representation $x'_i \in \{0, 1\}$ is interpretable

Image

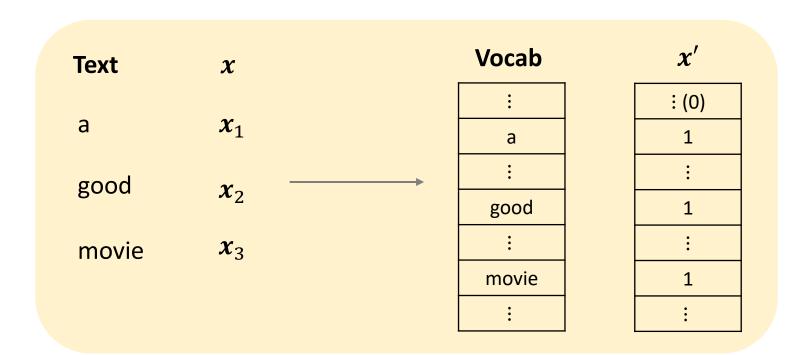
0/1 indicates the absence/presence of a patch of pixels

Text

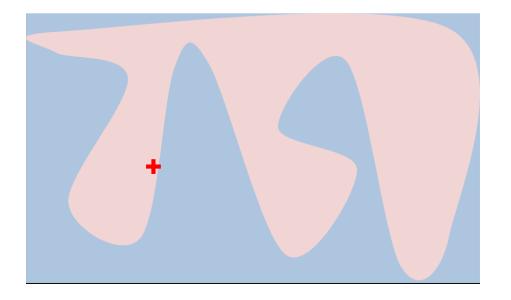
0/1 indicates the absence/presence of a word (bag-of-words representation)

• Interpretable data representations

Neural network $f \approx$ Linear model g $x = [x_1, x_2, \dots, x_n] \longrightarrow x' = [x'_1, x'_2, \dots, x'_N]$



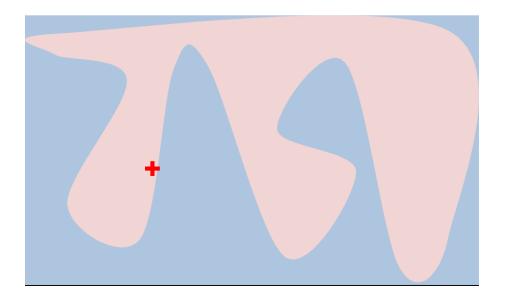
• Sampling for local exploration



Need more samples to fit a local linear model

It is a fantastic movie $\mathbf{x}' = [0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0, 1, \cdots, 0]_N$

• Sampling for local exploration



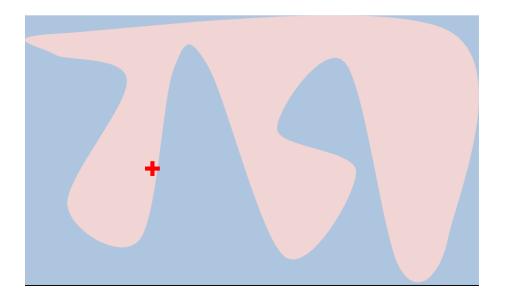
Need more samples to fit a local linear model

It is a fantastic movie $x' = [0, \dots, 1, \dots, 1, \dots, 1, \dots, 0, 1, \dots, 0]_N$ Randomly sample nonzero elements

a movie

$$\mathbf{z}_1' = [0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, \dots, 0, 1, \dots, 0]_N$$

• Sampling for local exploration



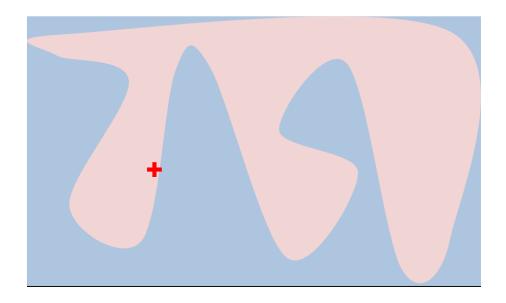
Need more samples to fit a local linear model

It is a fantastic movie $x' = [0, \dots, 1, \dots, 1, \dots, 1, \dots, 0, 1, \dots, 0]_N$ Randomly sample nonzero elements

a movie
$$\mathbf{z}_{1}' = [0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, \dots, 0, 1, \dots, 0]_{N}$$

fantastic movie $\mathbf{z}_{2}' = [0, \dots, 0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, 1, \dots, 0]_{N}$

• Sampling for local exploration



Need more samples to fit a local linear model

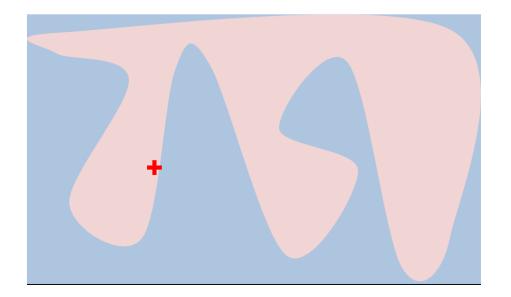
It is a fantastic movie $x' = [0, \dots, 1, \dots, 1, \dots, 1, \dots, 0, 1, \dots, 0]_N$ Randomly sample nonzero elements a movie

 $\mathbf{z}_{1}' = [0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0, 1, \cdots, 0]_{N}$

fantastic movie $\mathbf{z}_2' = [0, \dots, 0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, 1, \dots, 0]_N$

fantastic $\mathbf{z}_{M}' = [0, \dots, 0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, 0, \dots, 0]_{N}$

• Sampling for local exploration

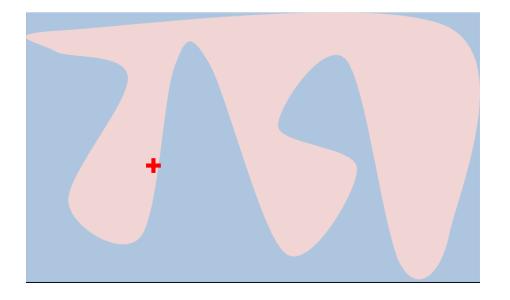


What are the labels of these pseudo examples?

Need more samples to fit a local linear model

a fantastic movie lt is $x' = [0, \dots, 1, \dots, 1, \dots, 1, \dots, 0, 1, \dots, 0]_N$ Randomly sample nonzero elements movie а $\mathbf{z}_{1}' = [0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0, 1, \cdots, 0]_{N}$ fantastic movie $\mathbf{z}_{2}' = [0, \dots, 0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, 1, \dots, 0]_{N}$ fantastic $\mathbf{z}_{M}' = [0, \dots, 0, \dots, 0, \dots, 0, \dots, 1, \dots, 0, 0, \dots, 0]_{N}$

• Sampling for local exploration



Labeling pseudo examples with neural network f

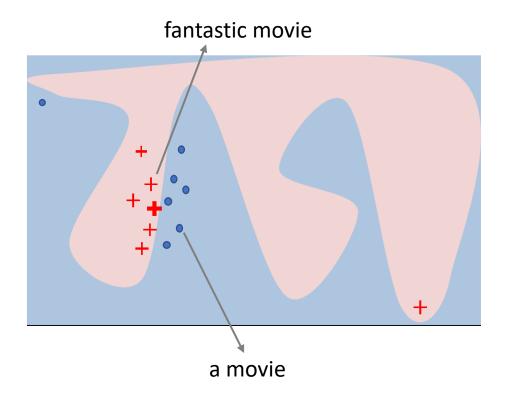
$$\mathbf{z}_1' \longrightarrow \mathbf{z}_1 \longrightarrow f(\mathbf{z}_1) \longrightarrow \mathsf{Negative} \bullet$$

$$\mathbf{z}_{2}' \longrightarrow \mathbf{z}_{2} \longrightarrow f(\mathbf{z}_{2}) \longrightarrow \text{Positive} +$$

: :

$$\mathbf{z}_M' \longrightarrow \mathbf{z}_M \longrightarrow f(\mathbf{z}_M) \longrightarrow \text{Positive} +$$

• Sampling for local exploration



Labeling pseudo examples with neural network f

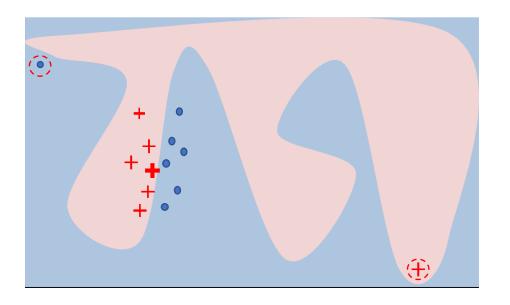
$$\mathbf{z}_1' \longrightarrow \mathbf{z}_1 \longrightarrow f(\mathbf{z}_1) \longrightarrow \mathsf{Negative} \bullet$$

$$\mathbf{z}_{2}' \longrightarrow \mathbf{z}_{2} \longrightarrow f(\mathbf{z}_{2}) \longrightarrow \text{Positive} +$$

: :

$$\mathbf{z}_M' \longrightarrow \mathbf{z}_M \longrightarrow f(\mathbf{z}_M) \longrightarrow \text{Positive} +$$

• Sampling for local exploration



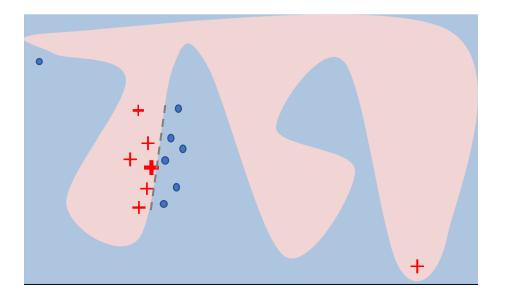
Penalize noisy examples

Distance between x and z_m

$$\pi_{\boldsymbol{x}}(\boldsymbol{z}_m) = e^{(-D(\boldsymbol{x},\boldsymbol{z}_m)^2/\sigma^2)}$$

D : cosine distance (for text), L_2 distance (for image)

• Sparse linear explanation

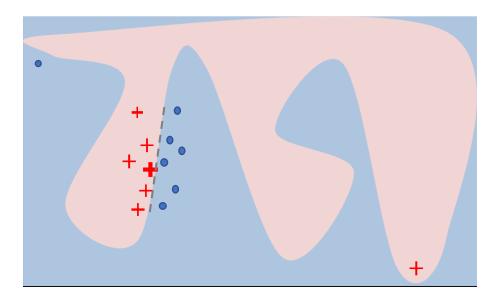


Fitting a local linear model

$$\left(\left(\mathbf{z}_{m}^{\prime}, f(\mathbf{z}_{m}) \right) \right)_{m=1,\cdots,M}$$

 $g(\mathbf{z}') \approx f(\mathbf{z})$ $g(\mathbf{z}') = \mathbf{w}^T \mathbf{z}'$

• Sparse linear explanation



Fitting a local linear model

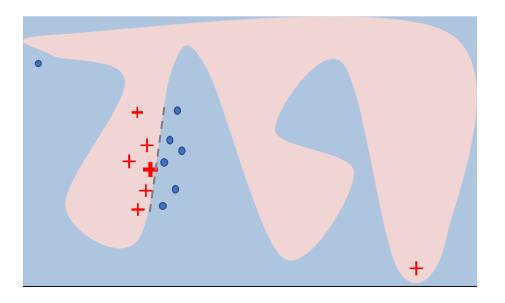
$$\left\{ \left(\mathbf{z}_{m}', f(\mathbf{z}_{m}) \right) \right\}_{m=1,\dots,M} \qquad g(\mathbf{z}') \approx f(\mathbf{z})$$
$$g(\mathbf{z}') = \mathbf{w}^{T} \mathbf{z}'$$

Objective

 $\min \mathcal{L}(f,g)$

$$\mathcal{L}(f,g) = \sum \pi_{\mathbf{x}}(\mathbf{z})(f(\mathbf{z}) - g(\mathbf{z}'))^2$$

• Sparse linear explanation



Fitting a local linear model

$$\{ (\mathbf{z}_m', f(\mathbf{z}_m)) \}_{m=1,\dots,M} \qquad g(\mathbf{z}') \approx f(\mathbf{z})$$
$$g(\mathbf{z}') = \mathbf{w}^T \mathbf{z}'$$

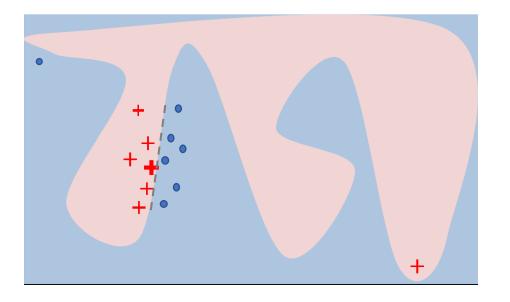
Objective

 $\min \mathcal{L}(f,g) + \Omega(g)$

Restricting complexity (the number of nonzero weights)

$$\mathcal{L}(f,g) = \sum \pi_{\boldsymbol{x}}(\boldsymbol{z})(f(\boldsymbol{z}) - g(\boldsymbol{z}'))^2$$

• Sparse linear explanation



Extracting feature importance scores

- \hat{y} : model prediction on the original example
- Local explanation: $\{w_{\hat{y},x_1}, \cdots, w_{\hat{y},x_n}\}$

Question?

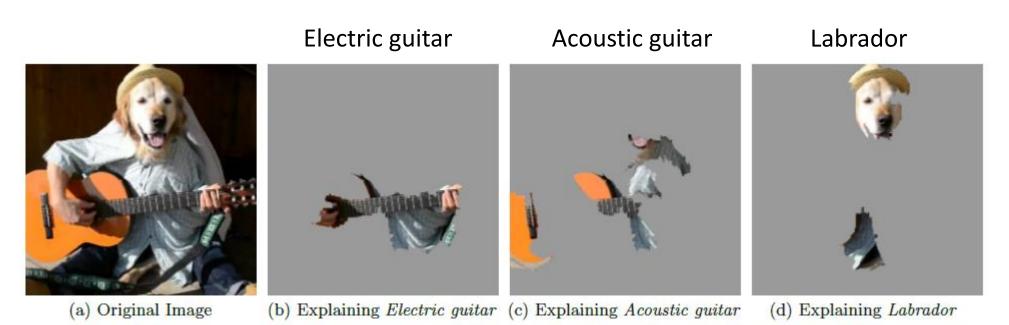
LIME: Local Interpretable Model-Agnostic Explanations

- Explaining each example individually, not the whole dataset (locally faithful)
- May not work for highly non-linear models

LIME: Local Interpretable Model-Agnostic Explanations

• Example: Deep networks for image classification

Model: Google's pre-trained Inception neural network



Top 3 predicted classes

The explanations enhance trust in the model, as it acts in a reasonable manner

Question?

Single explanation is not sufficient to evaluate and assess trust in the model as a whole

Providing a global understanding of the model by explaining a set of individual instances

Single explanation is not sufficient to evaluate and assess trust in the model as a whole

Providing a global understanding of the model by explaining a set of individual instances

• Budget B: the number of explanations users are willing to look at in order to understand a model

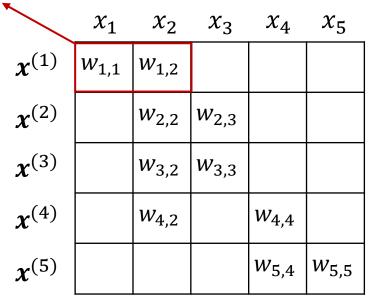
A set of instances $X \longrightarrow B$ instances (diverse, representative)

• Budget *B*: the number of explanations users are willing to look at in order to understand a model

Submodular pick (SP) algorithm

 $x^{(1)}$ contains two features

Explanation matrix W

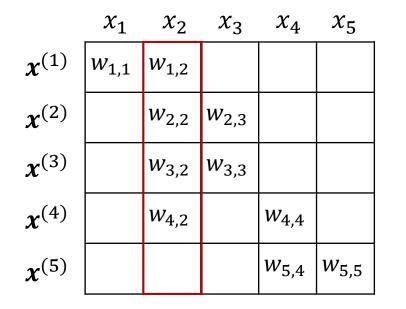


- Each row represents an instance
- Each column represents a feature
- Each value represents a local importance

• Budget *B*: the number of explanations users are willing to look at in order to understand a model

Submodular pick (SP) algorithm

Explanation matrix *W*

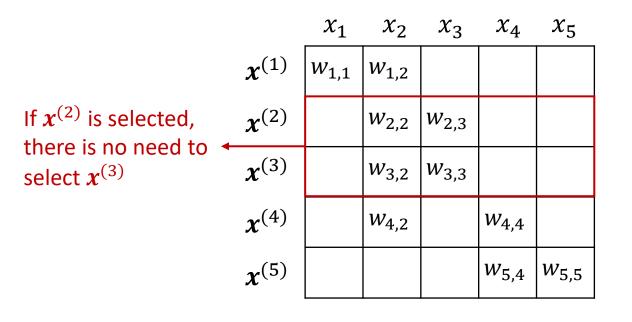


□ Select instances that cover important features (x_2)

• Budget *B*: the number of explanations users are willing to look at in order to understand a model

Submodular pick (SP) algorithm

Explanation matrix *W*



□ Select instances that cover important features (x_2)

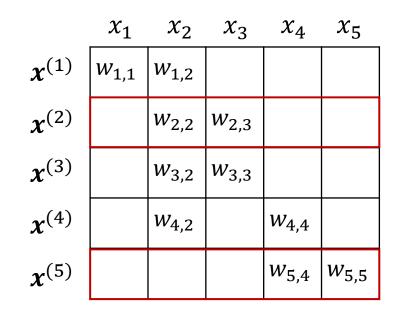
Avoid selecting instances with similar explanations (redundant features)

• Budget *B*: the number of explanations users are willing to look at in order to understand a model

A set of instances $X \longrightarrow B$ instances (diverse, representative)

Submodular pick (SP) algorithm

Explanation matrix *W*



- □ Select instances that cover important features (x_2)
- Avoid selecting instances with similar explanations (redundant features)
- □ Select less instances, while covering more features ($x^{(2)}$ and $x^{(5)}$)

Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

```
Require: Instances X, Budget B
```

for all $x^{(i)}$ in X do

 $\boldsymbol{w}^{(i)} \leftarrow LIME(\boldsymbol{x}^{(i)})$

Construct the explanation matrix

Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

```
Require: Instances X, Budget B
```

for all $x^{(i)}$ in X do

```
\boldsymbol{w}^{(i)} \leftarrow LIME(\boldsymbol{x}^{(i)})
```

Construct the explanation matrix

```
for j \in \{1, \dots, N\} do
```

 $I_j \leftarrow \sqrt{\sum_{i=1}^{|X|} w_{i,j}}$

Compute global feature importance

Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

```
Require: Instances X, Budget B
```

for all $x^{(i)}$ in X do

 $\boldsymbol{w}^{(i)} \leftarrow LIME(\boldsymbol{x}^{(i)})$

```
for j \in \{1, \cdots, N\} do
```

 $I_j \leftarrow \sqrt{\sum_{i=1}^{|X|} w_{i,j}}$

Construct the explanation matrix

Compute global feature importance

while |V| < B do

 $i^* = \operatorname*{argmax}_{i} c(V \cup x^{(i)}, W, I)$ $V \leftarrow V \cup x^{(i^*)}$

Greedily add examples that maximize the coverage gain

$$c(V, W, I) = \sum_{j=1}^{N} \mathbb{1}_{[\exists i \in V: w_{i,j} > 0]} I_j$$

The coverage computes the total global importance of the features that appear in at least one instance in a set *V*

Return V

 $V \leftarrow \{\}$

Compute global feature importance based on local feature importance from LIME

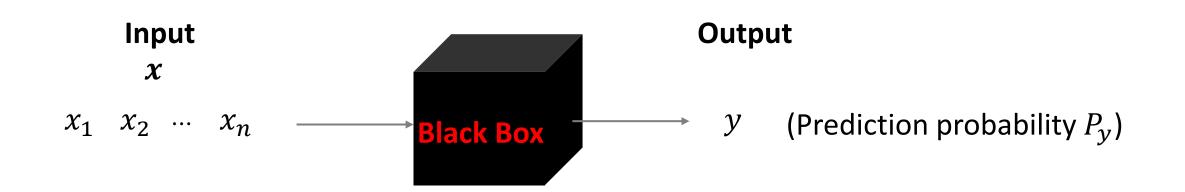
• Provide a global understanding of the model by selecting a set of representative instances

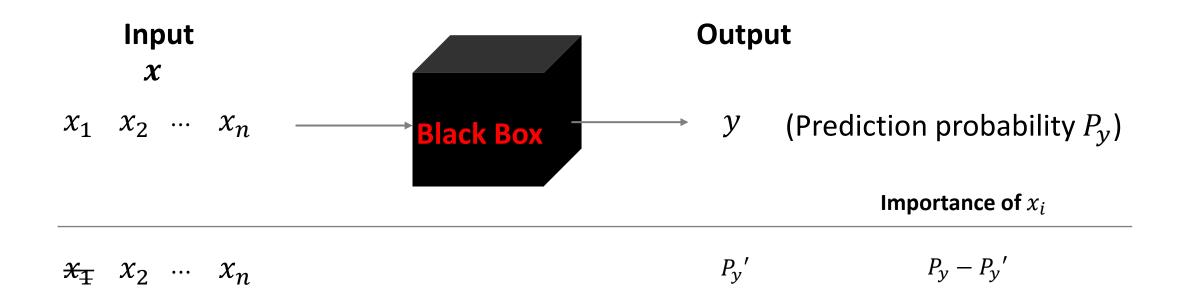
Question?

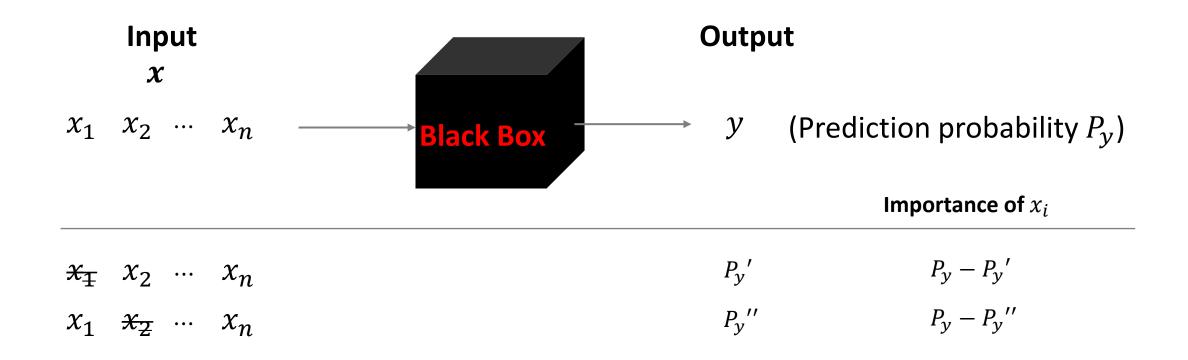
Perturbation-based methods

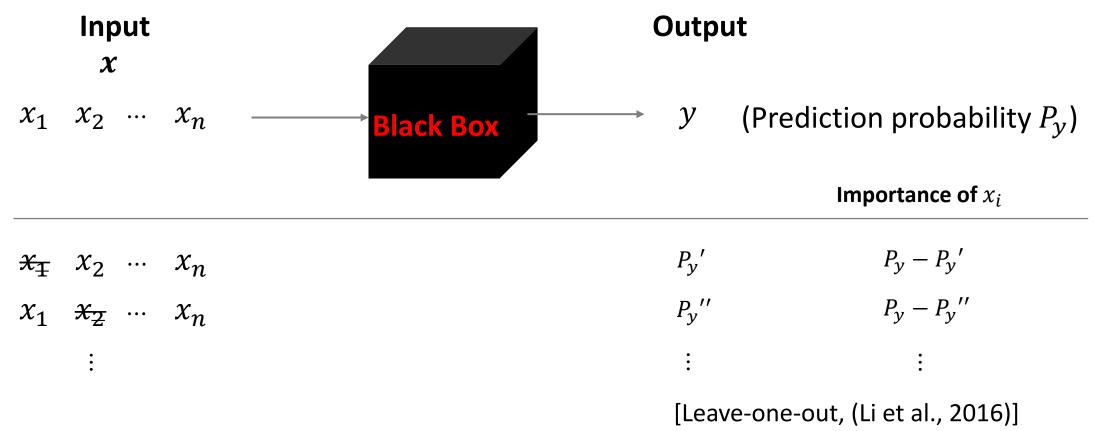
• LIME (Ribeiro et al., KDD, 2016)

• SHAP (Lundberg and Lee, NIPS, 2017)









Leave-one-out

- Sentiment classification
 - Model prediction: positive

Text	Confidence	Word importar	Word importance		
The movie is interesting	0.98				
-The movie is interesting	0.95	The	0.03		
The movie is interesting	0.87	movie	0.11		
The movie is interesting	0.96	is	0.02		
The movie is interesting	0.61	interesting	0.37		

Leave-one-out

• Leave **ONE** feature out at each step

Feature importance may be misleading

Text	Confidence	Word importance	
The movie is interesting and impressive	0.97		
The movie is interesting and impressive	0.95	interesting 0.02	
The movie is interesting and impressive	0.96	impressive 0.01	

Leave-one-out

• Leave **ONE** feature out at each step

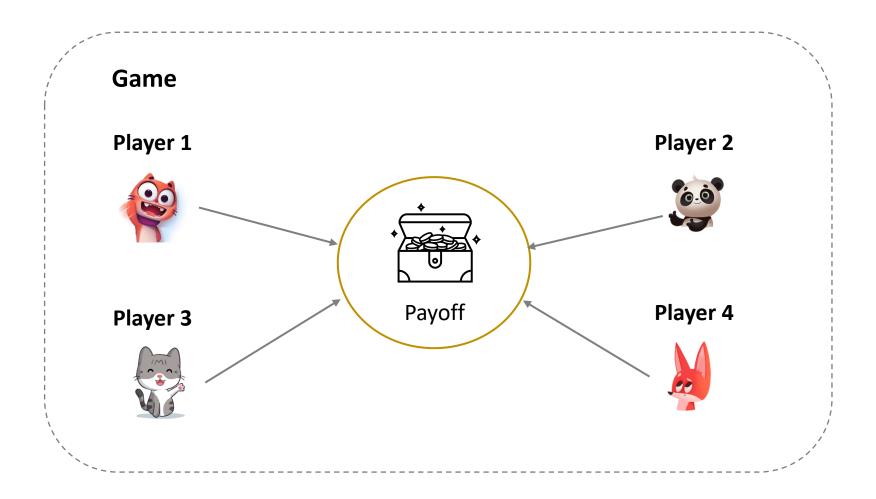
Feature importance may be misleading

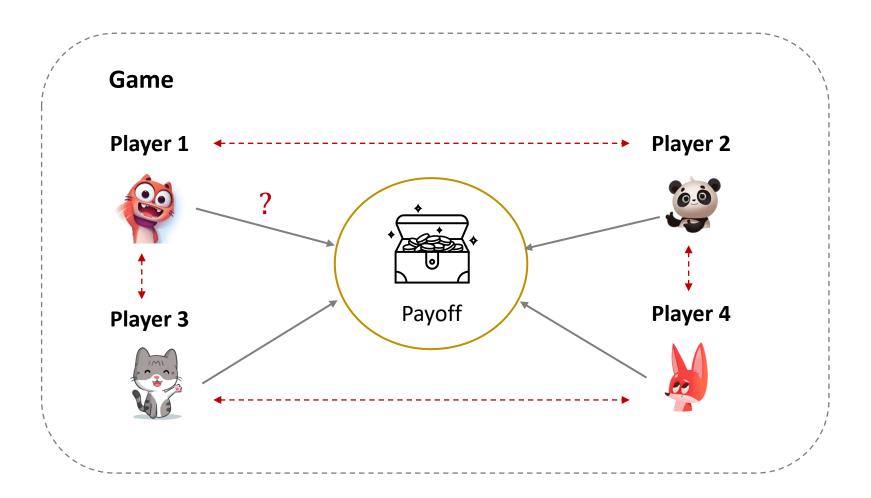
Text	Confidence	Word importance
The movie is interesting and impressive	0.97	
The movie is interesting and impressive	0.95	interesting 0.02
The movie is interesting and impressive	0.96	impressive 0.01

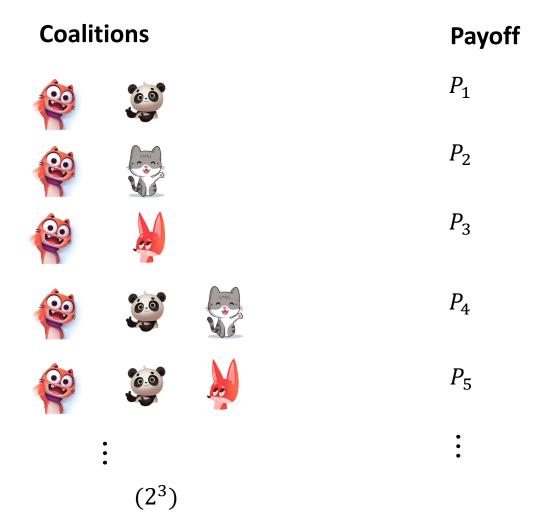
A unified approach to interpreting model predictions

Scott M. Lundberg, Su-In Lee

(NIPS, 2017)

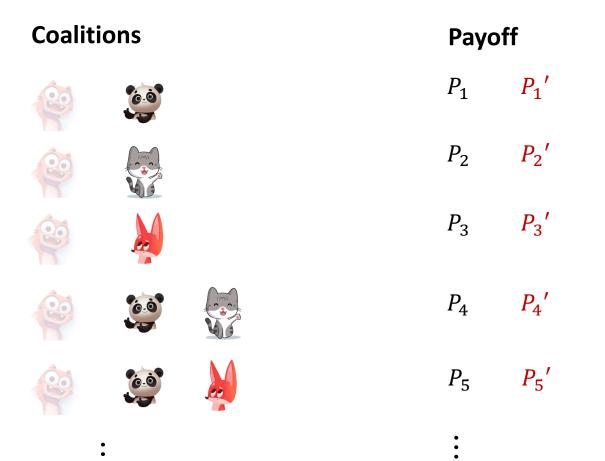






• Shapley value [Shapley, 1953]

 (2^{3})



• Shapley value [Shapley, 1953]

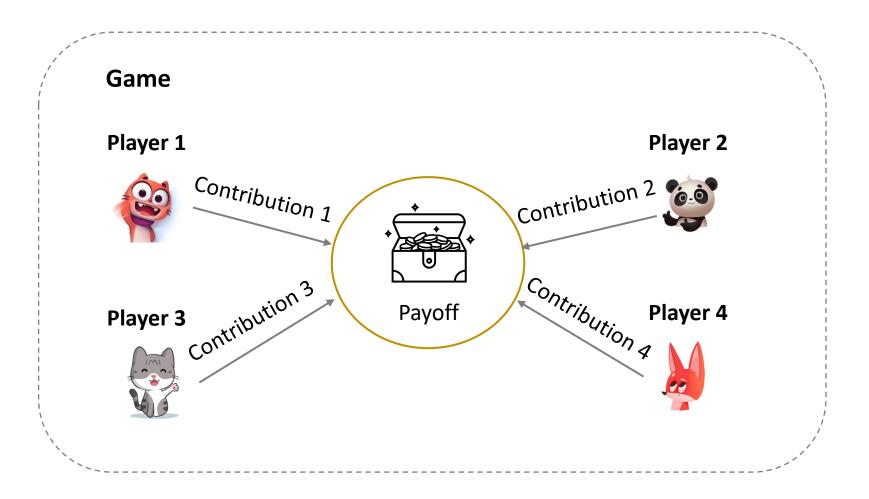
(2³)

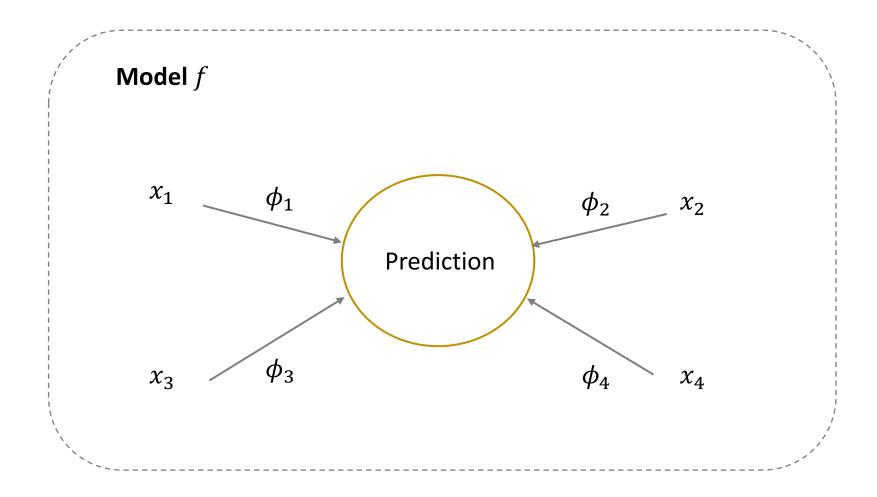
Coalitions		Payoff	Marginal contribution	
200	6.0		$P_1 - P_1'$	ΔP_1
			$P_2 - P_2'$	ΔP_2
200			$P_3 - P_3'$	ΔP_3
20	6.0		$P_4 - P_4'$	ΔP_4
20	6.0		$P_{5} - P_{5}'$	ΔP_5
	•		• •	

• Shapley value [Shapley, 1953]

(2³)

Coaliti	ons	Payoff	Marginal contribution	ו
200	6-0	$P_1 - P_1'$	ΔP_1	
		$P_2 - P_2'$	ΔP_2	
20		$P_3 - P_{3}'$	ΔP_3	
00	6-0	$P_4 - P_4'$	ΔP_4	Contribution = $\sum \Delta P_i$
	0-0	$P_{5} - P_{5}'$	ΔP_5	
	•	•		





$$\phi_{i} = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|! (|F| - |S| - 1)!}{|F|!} [f_{S \cup \{i\}} (x_{S \cup \{i\}}) - f_{S} (x_{S})]$$
Marginal contribution of x_{i} given S

$$i$$

$$F$$

$$F \setminus \{i\}$$

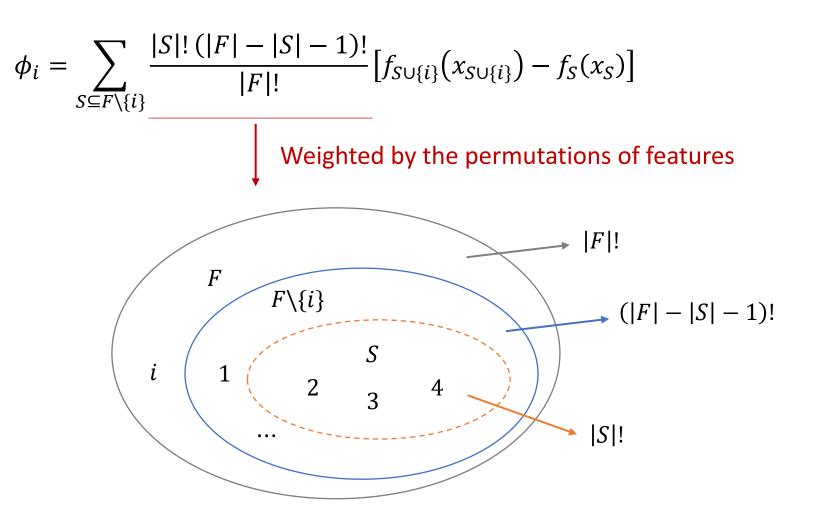
$$i$$

$$1$$

$$2$$

$$3$$

$$4$$



• SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

Original input Interpretable input

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

Original input Interpretable input

LIME is a special case, but not optimal

$$g(z') = \sum_{i=1}^{N} w_i z_i'$$

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

Original input Interpretable input

Property 1: Local accuracy

$$f(x) = g(x') = \phi_0 + \sum_{i=1}^N \phi_i x_i'$$
$$\phi_0 = h_x(0)$$

• SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

Original input Interpretable input

Property 2: Missingness

$$x_i' = 0 \implies \phi_i = 0$$

Missingness constrains features missing in the original input to have no attributed impact

• SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

Original input Interpretable input

Property 3: Consistency

For any two models f_1 and f_2 , if $f_1(h_x(z')) - f_1(h_x(z'\setminus i)) \ge f_2(h_x(z')) - f_2(h_x(z'\setminus i))$ $\overline{z'_i} = 0$ for all inputs $z' \in \{0, 1\}^N$, then $\phi_i(f_1, x) \ge \phi_i(f_2, x)$

Additive feature attribution method

$$g(z') \approx f(h_x(z'))$$
$$g(z') = \phi_0 + \sum_{i=1}^N \phi_i z_i'$$

$$z' \approx x'$$
 $\underline{x} = h_x(\underline{x'})$

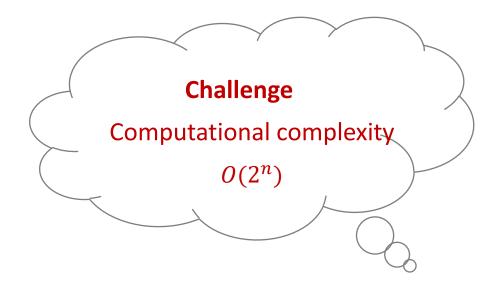
Original input Interpretable input

Only Shapley value satisfies all the three properties

$$\phi_i(f, x) = \sum_{\underline{z'} \subseteq x'} \frac{|z'|! (N - |z'| - 1)!}{N!} \left[f(h_x(z')) - f(h_x(z' \setminus i)) \right]$$

Contains a subset of non-zero entries in x'

$$\phi_i(f,x) = \sum_{z' \subseteq x'} \frac{|z'|! (N - |z'| - 1)!}{N!} \left[f(h_x(z')) - f(h_x(z' \setminus i)) \right]$$



• SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Model-type-specific approximations

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP

• SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Model-type-specific approximations

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP

Initialize the number of samples M $\phi_i \leftarrow 0$ for $m \in \{1, \dots, M\}$ do Sample $z' \subseteq x'$ $\phi_i \leftarrow \phi_i + \frac{|z'|!(N-|z'|-1)!}{N!} [f(h_x(z')) - f(h_x(z'\setminus i))]$

• SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Linear LIME + Shapley values

Model-type-specific approximations

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP

The solutions would be consistent with properties 1-3 $\Omega(g) = 0$ $\pi_{x'}(z') = \frac{(N-1)}{(N \ choose \ |z'|)|z'|(N-|z'|)}$ $\mathcal{L}(f,g) = \sum \pi_{x'}(z')(f(h_x(z')) - g(z'))^2$

• SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Model-type-specific approximations

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP

Faster model-specific methods

SHAP values can be approximated directly from the model's weight coefficients

Question?

Reference

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016.
- Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." *Proceedings of the* 31st international conference on neural information processing systems. 2017.
- Li, Jiwei, Will Monroe, and Dan Jurafsky. "Understanding neural networks through representation erasure." *arXiv preprint arXiv:1612.08220* (2016).
- Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory of Games, 2(28).