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Post-hoc explanations: perturbation-based methods
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Trade-off

Black-box 
Neural Network

Interpretable GAM

Limitations

• Ignoring complex 
feature interactions

• Performance drop
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Explaining Black-box Model

Black Box

Input Output
𝒙 𝒚

How to improve model interpretability?

Model’s inner working and decision making are hidden in the black box 
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Explaining Black-box Model

Black Box

Input Output
𝒙 𝒚

How to improve model interpretability?

Explaining model predictions from the post-hoc manner

Interpreter

Post-hoc explanation

Extracting relationships 
between input features 
and the model prediction
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Post-hoc Explanation

Input features Model predictionImportance

𝑥1

𝑥2

𝑥𝑛

⋯

𝑦

𝑎1

𝑎2

𝑎𝑛

Identifying important features
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Post-hoc Explanation

• Example 1: tabular data

- Mushroom dataset
- Task: predicting if a mushroom is edible or poisonous

Feature

Odor

gill size

stalk surface 
above ring

Spore print color

stalk surface 
below ring
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Post-hoc Explanation

• Example 1: tabular data

- Mushroom dataset
- Task: predicting if a mushroom is edible or poisonous

Feature Value

Odor=foul 𝑥1 = 1 (true)

gill size=broad 𝑥2 = 1

stalk surface above 
ring=silky

𝑥3 = 1

Spore print 
color=chocolate

𝑥4 = 1

stalk surface below 
ring=silky

𝑥5 = 1

Model
Prediction

poisonous

ExplanationInput

Importance

𝑎1 = 0.26

𝑎2 = −0.13

𝑎3 = 0.11

𝑎4 = 0.08

𝑎5 = 0.06
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Post-hoc Explanation

• Example 1: tabular data

- Mushroom dataset
- Task: predicting if a mushroom is edible or poisonous

Feature Value

Odor=foul 𝑥1 = 1 (true)

gill size=broad 𝑥2 = 1

stalk surface above 
ring=silky

𝑥3 = 1

Spore print 
color=chocolate

𝑥4 = 1

stalk surface below 
ring=silky

𝑥5 = 1

Model
Prediction

poisonous

ExplanationInput

Importance

𝑎1 = 0.26

𝑎2 = −0.13

𝑎3 = 0.11

𝑎4 = 0.08

𝑎5 = 0.06

(the most 
important feature)

(indicating edible)
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Post-hoc Explanation

• Example 2: text data

- Movie review
- Task: predicting the sentiment of a text (positive or negative)

Model
Prediction

positive

Input

a

clever

piece

of

cinema

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5
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Post-hoc Explanation

• Example 2: text data

- Movie review
- Task: predicting the sentiment of a text (positive or negative)

Model
Prediction

positive

ExplanationInput

a

clever

piece

of

cinema

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

𝑎1 = 0.11

𝑎2 = 0.46

𝑎3 = 0.01

𝑎4 = −0.02

𝑎5 = 0.06

(Word saliency map)

a

clever

piece

of

cinema

Pos

Neg

0.5

0

−0.5
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Post-hoc Explanation

• Example 3: image data

Task: Object recognition

Source: https://medium.datadriveninvestor.com/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

Feature: a pixel 𝒙𝑖𝑗

(color, intensity…)
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Post-hoc Explanation

• Example 3: image data

Task: Object recognition
Prediction: Dog

Source: https://medium.datadriveninvestor.com/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

𝒙𝑖𝑗 𝒂𝑖𝑗

Saliency map: the lighter color, 
the larger value

ExplanationInput
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Post-hoc Explanation

• Model-agnostic (black-box): not requiring access to model inner working  

How to learn feature importance?

Perturbation-based methods

• Local: explaining model prediction per example 
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Perturbation-based methods

• LIME 

• SHAP

(Ribeiro et al., KDD, 2016)

(Lundberg and Lee, NIPS, 2017)



15

LIME

"Why Should I Trust You?"
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

(KDD, 2016)
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Interpretable Model

• Linear model

ℎ𝑦 𝒙 = 𝒘𝑦
𝑇𝒙

- 𝑤𝑦,𝑗: the contribution of 𝑥𝑗
- Higher weights indicate more important features 

𝒙 ∈ 0, 1 𝑛

Global interpretation

Feature

𝒙𝑣1
𝒙𝑣2

𝒙𝑣𝑛

⋯

Importance

⋯

𝑤𝑦,𝒙𝑣1

⋯

𝑤𝑦,𝒙𝑣2

𝑤𝑦,𝒙𝑣𝑛
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Interpretable Model

• Linear model

ℎ𝑦 𝒙 = 𝒘𝑦
𝑇𝒙

- 𝑤𝑦,𝑗: the contribution of 𝑥𝑗
- Higher weights indicate more important features 

𝒙 ∈ 0, 1 𝑛

Global interpretation

Feature

𝒙𝑣1
𝒙𝑣2

𝒙𝑣𝑛

⋯

Importance

𝑤𝑦,𝒙𝑣1

⋯

𝑤𝑦,𝒙𝑣2

𝑤𝑦,𝒙𝑣𝑛

⋯

Logistic regression 

“It”        “is”       “a”      “fantastic”      “movie”

𝒘0

𝒘1[Pos]

[Neg] 0.89 0.72 1.13 -1.92 0.34

0.85 0.82 1.05 2.21 0.26

1.16

5.19

Prediction: positive
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Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features 
and the response

- The meaning of a feature may vary across different examples

“good”

adjective Morally excellent

noun Possessions
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Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features 
and the response

- The meaning of a feature may vary across different examples

“good”

adjective Morally excellent

noun Possessions Local interpretation

Explaining model prediction 
per example by identifying 
local feature importance
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LIME: Local Interpretable Model-Agnostic Explanations

The way that explains model 
predictions or the generated 
explanations are understandable 
to humans 
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Idea: using local linear model to approximate neural network for each example 

• Decision boundary of a neural 

network 𝑓

• Dashed line: local linear model 𝑔

• Blue/pink background represents 

negative (-) /positive (+) class

• Bold red cross: the instance 𝒙 being 

explained

𝑔 ≈ 𝑓

LIME: Local Interpretable Model-Agnostic Explanations
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• Interpretable data representations

Neural network 𝑓 Linear model 𝑔

𝒙 = 𝒙1, 𝒙2, ⋯ , 𝒙𝑛 𝒙′ = 𝑥′1, 𝑥′2, ⋯ , 𝑥′𝑁

Feature representation 

𝒙𝑖 ∈ ℝ𝒅 is uninterpretable 

Feature representation 
𝑥′𝑖 ∈ 0, 1 is interpretable 

- 𝑛: the number of features in the example
- 𝑁: the number of all features

LIME: Local Interpretable Model-Agnostic Explanations
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• Interpretable data representations

Neural network 𝑓 Linear model 𝑔

𝒙 = 𝒙1, 𝒙2, ⋯ , 𝒙𝑛 𝒙′ = 𝑥′1, 𝑥′2, ⋯ , 𝑥′𝑁

Feature representation 

𝒙𝑖 ∈ ℝ𝒅 is uninterpretable 

Feature representation 
𝑥′𝑖 ∈ 0, 1 is interpretable 

Image

Text

𝒙𝑖: a tensor with three color channels per pixel 0/1 indicates the absence/presence of a patch of pixels

𝒙𝑖: a high-dimensional vector (word embedding)

Image

Text

0/1 indicates the absence/presence of a word

(bag-of-words representation)

LIME: Local Interpretable Model-Agnostic Explanations
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• Interpretable data representations

Neural network 𝑓 Linear model 𝑔

𝒙 = 𝒙1, 𝒙2, ⋯ , 𝒙𝑛 𝒙′ = 𝑥′1, 𝑥′2, ⋯ , 𝑥′𝑁

≈

Text

a

good

movie

𝒙

𝒙1

𝒙2

𝒙3

Vocab

⋮

a

⋮

good

⋮

movie

⋮

𝒙′

⋮ (0)

1

⋮

1

⋮

1

⋮

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

It is a fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

It is a fantastic movie

Randomly sample nonzero elements

𝒛1′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 𝑁

a movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

It is a fantastic movie

Randomly sample nonzero elements

𝒛1′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 𝑁

𝒛2′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

a movie

fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

It is a fantastic movie

Randomly sample nonzero elements

𝒛1′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 𝑁

𝒛2′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

a movie

fantastic movie

𝒛𝑀′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 0,⋯ , 0 𝑁

⋮
fantastic

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

It is a fantastic movie

Randomly sample nonzero elements

𝒛1′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 𝑁

𝒛2′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 𝑁

a movie

fantastic movie

𝒛𝑀′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 0,⋯ , 0 𝑁

⋮
fantastic

What are the labels of 
these pseudo examples?

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Labeling pseudo examples with neural network 𝑓

𝒛1′

𝒛2′

𝒛𝑀′

⋮

𝒛1

𝒛2

𝒛𝑀

⋮

𝑓 𝒛1

𝑓 𝒛2

𝑓 𝒛𝑀

Negative

Positive

Positive

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Labeling pseudo examples with neural network 𝑓

𝒛1′

𝒛2′

𝒛𝑀′

⋮

𝒛1

𝒛2

𝒛𝑀

⋮

𝑓 𝒛1

𝑓 𝒛2

𝑓 𝒛𝑀

Negative

Positive

Positive

a movie

fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Penalize noisy examples 

Distance between 𝒙 and 𝒛𝑚

𝜋𝒙 𝒛𝑚 = 𝑒(−𝐷 𝒙,𝒛𝑚
2/𝜎2)

𝐷 : cosine distance (for text), 𝐿2 distance (for image)

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)𝒛𝑚′, 𝑓 𝒛𝑚 𝑚=1,⋯,𝑀

𝑔 𝒛′ = 𝒘𝑇𝒛′

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)𝒛𝑚′, 𝑓 𝒛𝑚 𝑚=1,⋯,𝑀

Objective

minℒ 𝑓, 𝑔

ℒ 𝑓, 𝑔 =𝜋𝒙 𝒛 (𝑓 𝒛 − 𝑔(𝒛′))2

𝑔 𝒛′ = 𝒘𝑇𝒛′

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)𝒛𝑚′, 𝑓 𝒛𝑚 𝑚=1,⋯,𝑀

Objective

minℒ 𝑓, 𝑔 + Ω(𝑔)

ℒ 𝑓, 𝑔 =𝜋𝒙 𝒛 (𝑓 𝒛 − 𝑔(𝒛′))2

Restricting complexity (the 
number of nonzero weights)

𝑔 𝒛′ = 𝒘𝑇𝒛′

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Extracting feature importance scores

𝒘 ො𝑦
𝑇

- ො𝑦: model prediction on the original example

- Local explanation: 𝑤ො𝑦,𝒙1 , ⋯ , 𝑤ො𝑦,𝒙𝑛

LIME: Local Interpretable Model-Agnostic Explanations
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Question?
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• Explaining each example individually, not the whole dataset (locally faithful)

• May not work for highly non-linear models

LIME: Local Interpretable Model-Agnostic Explanations
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• Example: Deep networks for image classification

Model: Google’s pre-trained Inception neural network

Top 3 predicted classes

Electric guitar Acoustic guitar Labrador

The explanations enhance trust in the model, as it acts in a reasonable manner

LIME: Local Interpretable Model-Agnostic Explanations
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Question?
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Submodular Pick for Explaining Models

Single explanation is not 
sufficient to evaluate and assess 
trust in the model as a whole

Providing a global understanding
of the model by explaining a set 
of individual instances
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Submodular Pick for Explaining Models

Single explanation is not 
sufficient to evaluate and assess 
trust in the model as a whole

Providing a global understanding
of the model by explaining a set 
of individual instances

How to select these 
instances judiciously?
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Submodular Pick for Explaining Models

• Budget 𝐵: the number of explanations users are willing to look at in order to understand a model

A set of instances 𝑋
select

𝐵 instances (diverse, representative)
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Submodular Pick for Explaining Models

• Budget 𝐵: the number of explanations users are willing to look at in order to understand a model

A set of instances 𝑋
select

𝐵 instances (diverse, representative)

➢ Submodular pick (SP) algorithm

𝑤1,1 𝑤1,2

𝑤2,2 𝑤2,3

𝑤3,2 𝑤3,3

𝑤4,2 𝑤4,4

𝑤5,4 𝑤5,5

𝒙(1)

Explanation matrix 𝑊

𝒙(2)

𝒙(3)

𝒙(4)

𝒙(5)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

- Each row represents an instance
- Each column represents a feature
- Each value represents a local importance

𝒙(1) contains two features
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Submodular Pick for Explaining Models

• Budget 𝐵: the number of explanations users are willing to look at in order to understand a model

A set of instances 𝑋
select

𝐵 instances (diverse, representative)

➢ Submodular pick (SP) algorithm

𝑤1,1 𝑤1,2

𝑤2,2 𝑤2,3

𝑤3,2 𝑤3,3

𝑤4,2 𝑤4,4

𝑤5,4 𝑤5,5

𝒙(1)

Explanation matrix 𝑊

𝒙(2)

𝒙(3)

𝒙(4)

𝒙(5)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

❑ Select instances that cover 
important features (𝑥2)

𝐼2: global importance of 𝑥2
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Submodular Pick for Explaining Models

• Budget 𝐵: the number of explanations users are willing to look at in order to understand a model

A set of instances 𝑋
select

𝐵 instances (diverse, representative)

➢ Submodular pick (SP) algorithm

𝑤1,1 𝑤1,2

𝑤2,2 𝑤2,3

𝑤3,2 𝑤3,3

𝑤4,2 𝑤4,4

𝑤5,4 𝑤5,5

𝒙(1)

Explanation matrix 𝑊

𝒙(2)

𝒙(3)

𝒙(4)

𝒙(5)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

❑ Select instances that cover 
important features (𝑥2)

❑ Avoid selecting instances with similar 
explanations (redundant features)

If 𝒙(2) is selected, 
there is no need to 

select 𝒙(3)
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Submodular Pick for Explaining Models

• Budget 𝐵: the number of explanations users are willing to look at in order to understand a model

A set of instances 𝑋
select

𝐵 instances (diverse, representative)

➢ Submodular pick (SP) algorithm

𝑤1,1 𝑤1,2

𝑤2,2 𝑤2,3

𝑤3,2 𝑤3,3

𝑤4,2 𝑤4,4

𝑤5,4 𝑤5,5

𝒙(1)

Explanation matrix 𝑊

𝒙(2)

𝒙(3)

𝒙(4)

𝒙(5)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

❑ Select instances that cover 
important features (𝑥2)

❑ Avoid selecting instances with similar 
explanations (redundant features)

❑ Select less instances, while covering 

more features (𝒙(2) and 𝒙(5))
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Submodular Pick for Explaining Models

➢ Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

Require: Instances 𝑋, Budget 𝐵

for all 𝒙(𝑖) in 𝑋 do

𝒘(𝑖) ← 𝐿𝐼𝑀𝐸(𝒙(𝑖))
Construct the explanation matrix
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Submodular Pick for Explaining Models

➢ Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

Require: Instances 𝑋, Budget 𝐵

for all 𝒙(𝑖) in 𝑋 do

𝒘(𝑖) ← 𝐿𝐼𝑀𝐸(𝒙(𝑖))
Construct the explanation matrix

for 𝑗 ∈ 1,⋯ ,𝑁 do

𝐼𝑗 ← 
𝑖=1

𝑋

𝑤𝑖,𝑗
Compute global feature importance
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Submodular Pick for Explaining Models

➢ Submodular pick (SP) algorithm

Algorithm Submodular pick (SP) algorithm

Require: Instances 𝑋, Budget 𝐵

for all 𝒙(𝑖) in 𝑋 do

𝒘(𝑖) ← 𝐿𝐼𝑀𝐸(𝒙(𝑖))
Construct the explanation matrix

for 𝑗 ∈ 1,⋯ ,𝑁 do

𝐼𝑗 ← 
𝑖=1

𝑋

𝑤𝑖,𝑗
Compute global feature importance

𝑉 ← {}

while 𝑉 < 𝐵 do

𝑉 ← 𝑉⋃𝒙(𝑖
∗)

Return 𝑉

𝑖∗ = argmax
𝑖

𝑐 𝑉⋃𝒙 𝑖 ,𝑊, 𝐼 c 𝑉,𝑊, 𝐼 = σ𝑗=1
𝑁 1 ∃𝑖∈𝑉:𝑤𝑖,𝑗>0

𝐼𝑗

Greedily add examples that maximize the coverage gain 

The coverage computes the total global importance of the 
features that appear in at least one instance in a set V
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SP-LIME

• Compute global feature importance based on local feature importance 
from LIME

• Provide a global understanding of the model by selecting a set of 
representative instances
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Question?
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Perturbation-based methods

• LIME 

• SHAP

(Ribeiro et al., KDD, 2016)

(Lundberg and Lee, NIPS, 2017)
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥1 𝑥2 𝑥𝑛⋯ (Prediction probability 𝑃𝑦)
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥1 𝑥2 𝑥𝑛⋯ (Prediction probability 𝑃𝑦)

𝑥1 𝑥2 𝑥𝑛⋯ 𝑃𝑦′

Importance of 𝑥𝑖

𝑃𝑦 − 𝑃𝑦′
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥1 𝑥2 𝑥𝑛⋯ (Prediction probability 𝑃𝑦)

𝑥1 𝑥2 𝑥𝑛⋯ 𝑃𝑦′

Importance of 𝑥𝑖

𝑃𝑦 − 𝑃𝑦′

𝑥1 𝑥2 𝑥𝑛⋯ 𝑃𝑦′′ 𝑃𝑦 − 𝑃𝑦′′
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥1 𝑥2 𝑥𝑛⋯ (Prediction probability 𝑃𝑦)

𝑥1 𝑥2 𝑥𝑛⋯ 𝑃𝑦′

Importance of 𝑥𝑖

𝑃𝑦 − 𝑃𝑦′

𝑥1 𝑥2 𝑥𝑛⋯ 𝑃𝑦′′ 𝑃𝑦 − 𝑃𝑦′′

⋯ ⋯ ⋯

[Leave-one-out, (Li et al., 2016)]
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Leave-one-out

• Sentiment classification

Text Confidence Word importance

The movie is interesting 0.98

The movie is interesting 0.95 The

The movie is interesting 0.87 movie

The movie is interesting 0.96 is

The movie is interesting 0.61 interesting

Model prediction: positive

0.03

0.11

0.02

0.37
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• Leave ONE feature out at each step 

Text Confidence Word importance

The movie is interesting and impressive  0.97

0.95

0.96

interestingThe movie is interesting and impressive  

The movie is interesting and impressive  impressive

Leave-one-out

Feature importance may be misleading

0.02

0.01
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• Leave ONE feature out at each step 

Text Confidence Word importance

The movie is interesting and impressive  0.97

0.95

0.96

interestingThe movie is interesting and impressive  

The movie is interesting and impressive  impressive

Leave-one-out

Feature importance may be misleading

0.02

0.01

Need a better way to quantify 
feature importance
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SHAP

A unified approach to interpreting model predictions

Scott M. Lundberg, Su-In Lee

(NIPS, 2017)
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4

?
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SHAP

• Shapley value [Shapley, 1953]

Coalitions Payoff

⋯

(23)

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

⋯
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

(23)

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

⋯

𝑃1′

𝑃2′

𝑃3′

𝑃4′

𝑃5′

Payoff
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

(23)

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

⋯

𝑃1′

𝑃2′

𝑃3′

𝑃4′

𝑃5′

Payoff Marginal contribution

−

−

−

−

−

∆𝑃1

∆𝑃2

∆𝑃3

∆𝑃4

∆𝑃5
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

⋯

𝑃1′

𝑃2′

𝑃3′

𝑃4′

𝑃5′

Payoff Marginal contribution

−

−

−

−

−

∆𝑃1

∆𝑃2

∆𝑃3

∆𝑃4

∆𝑃5

Contribution= σ∆𝑃𝑖

(23)
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4
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SHAP

• Shapley value [Shapley, 1953]

Model 𝑓

Prediction

𝑥1 𝑥2

𝑥3 𝑥4

𝜙1 𝜙2

𝜙3 𝜙4
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SHAP

• Shapley value [Shapley, 1953]

𝜙𝑖 = 

𝑆⊆𝐹\{𝑖}

𝑆 ! 𝐹 − 𝑆 − 1 !

𝐹 !
𝑓𝑆∪{𝑖} 𝑥𝑆∪{𝑖} − 𝑓𝑆 𝑥𝑆

𝐹

𝑆
𝑖 1

⋯

Marginal contribution of 𝑥𝑖 given 𝑆

𝐹\{𝑖}

2
3

4
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SHAP

• Shapley value [Shapley, 1953]

Weighted by the permutations of features

𝐹

𝑆
𝑖 1

⋯

𝐹\{𝑖}

2
3

4

𝜙𝑖 = 

𝑆⊆𝐹\{𝑖}

𝑆 ! 𝐹 − 𝑆 − 1 !

𝐹 !
𝑓𝑆∪{𝑖} 𝑥𝑆∪{𝑖} − 𝑓𝑆 𝑥𝑆

𝐹 !

𝐹 − 𝑆 − 1 !

𝑆 !
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input

LIME is a special case, but not optimal

𝑔 𝑧′ =

𝑖=1

𝑁

𝑤𝑖𝑧𝑖′
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input

❑ Property 1: Local accuracy

𝑓 𝑥 = 𝑔 𝑥′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑥𝑖′

𝜙0 = ℎ𝑥 0
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input

❑ Property 2: Missingness

𝑥𝑖
′ = 0 ⟹ 𝜙𝑖 = 0

Missingness constrains features missing in the 
original input to have no attributed impact
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input

❑ Property 3: Consistency

For any two models 𝑓1 and 𝑓2, if 𝑓1 ℎ𝑥 𝑧′ − 𝑓1 ℎ𝑥 𝑧′\𝑖 ≥ 𝑓2 ℎ𝑥 𝑧′ − 𝑓2 ℎ𝑥 𝑧′\𝑖

𝑧𝑖
′ = 0

for all inputs 𝑧′ ∈ 0, 1 𝑁, then 𝜙𝑖 𝑓1, 𝑥 ≥ 𝜙𝑖 𝑓2, 𝑥
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎ𝑥 𝑧′

𝑔 𝑧′ = 𝜙0 +

𝑖=1

𝑁

𝜙𝑖𝑧𝑖′

𝑧′ ≈ 𝑥′ 𝑥 = ℎ𝑥 𝑥′

Interpretable input

Additive feature attribution method

Original input

Only Shapley value satisfies all the three properties

𝜙𝑖 𝑓, 𝑥 = 

𝑧′⊆𝑥′

𝑧′ ! 𝑁 − 𝑧′ − 1 !

𝑁!
𝑓 ℎ𝑥 𝑧′ − 𝑓 ℎ𝑥 𝑧′\𝑖

Contains a subset of non-zero entries in 𝑥′
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SHAP

𝜙𝑖 𝑓, 𝑥 = 

𝑧′⊆𝑥′

𝑧′ ! 𝑁 − 𝑧′ − 1 !

𝑁!
𝑓 ℎ𝑥 𝑧′ − 𝑓 ℎ𝑥 𝑧′\𝑖

Challenge

Computational complexity

𝑂(2𝑛)

• SHapley Additive exPlanation (SHAP) 
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP

Initialize the number of samples 𝑀

𝜙𝑖 ⟵ 0

for 𝑚 ∈ 1,⋯ ,𝑀 do

𝜙𝑖 ⟵𝜙𝑖 +
𝑧′ ! 𝑁− 𝑧′ −1 !

𝑁!
𝑓 ℎ𝑥 𝑧′ − 𝑓 ℎ𝑥 𝑧′\𝑖

Sample 𝑧′ ⊆ 𝑥′
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP

Ω 𝑔 = 0

𝜋𝑥′ 𝑧′ =
(𝑁 − 1)

(𝑁 𝑐ℎ𝑜𝑜𝑠𝑒 𝑧′ ) 𝑧′ (𝑁 − 𝑧′ )

ℒ 𝑓, 𝑔 =𝜋𝑥′ 𝑧′ (𝑓 ℎ𝑥 𝑧′ − 𝑔(𝑧′))2

Linear LIME + Shapley values

The solutions would be consistent with properties 1-3
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP

Faster model-specific methods

SHAP values can be approximated directly 
from the model’s weight coefficients
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Question?



84

Reference
• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions 

of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and 
data mining. 2016.

• Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Proceedings of the 
31st international conference on neural information processing systems. 2017.

• Li, Jiwei, Will Monroe, and Dan Jurafsky. "Understanding neural networks through representation 
erasure." arXiv preprint arXiv:1612.08220 (2016).

• Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory of Games, 2(28).


