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Overview

1. What is a white box looks like?

2. What is a neural network?

3. Why we need neural network models?

4. Why neural network is a black box?
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What is a white box looks like?



Linear Models

Directly modeling a linear classifier as

ℎH(x) = wT
Hx + 1H (1)

I x ∈ ℕ+
: vector, bag-of-words representation

I wH ∈ ℝ+
: vector, classification weights associated with label H

I 1H ∈ ℝ: scalar, label bias in the training set H
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Logistic Regression

Rewrite the linear decision function in the log probabilistic form

log%(H | x) ∝ wT
Hx + 1H︸     ︷︷     ︸
ℎH (x)

(2)

or, the probabilistic form is

%(H | x) ∝ exp(wT
Hx + 1H) (3)

To make sure %(H | x) is a valid definition of probability, we need to

make sure

∑
H %(H | x) = 1,

%(H | x) =
exp(wT

Hx + 1H)∑
H′∈Yexp(wT

H′x + 1H′)
(4)
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Alternative Form

Rewriting x and w as

I xT = [G1 , G2 , · · · , G+ , 1]
I wT

H = [F1 , F2 , · · · , F+ , 1H]

allows us to have a more concise form

%(H | x) =
exp(wT

Hx)∑
H′∈Yexp(wT

H′x)
(5)

Comments:

I exp(0)∑
0′ exp(0′) is the softmax function

I This form works with any size of Y— it does not have to be a

binary classification problem.
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Binary Classifier

Assume Y= {neg, pos}, then the corresponding logistic regression

classifier with . = Pos is

%(. = Pos | x) = 1

1 + exp(−wTx)
(6)

where w is the only parameter.

I %(. = Neg | x) = 1 − %(. = Pos | x)
I 1

1+exp(−I) is the Sigmoid function
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Two Questions on Building LR Models

... of building a logistic regression classifier

%(H | x) =
exp(wT

Hx)∑
H′∈Yexp(wT

H′x)
(7)

I How to learn the parameters] = {wH}H∈Y?

I Can x be better than the bag-of-words representations?
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Review: (Log)-likelihood Function

With a collection of training examples {(x(8) , H(8))}<
8=1

, the likelihood

function of {wH}H∈Y is

!(] ) =
<∏
8=1

%(H(8) | x(8)) (8)

and the log-likelihood function is

ℓ ({wH}) =
<∑
8=1

log%(H(8) | x(8)) (9)
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Log-likelihood Function of a LR Model

With the definition of a LR model

%(H | x) =
exp(wT

Hx)∑
H′∈Yexp(wT

H′x)
(10)

the log-likelihood function is

ℓ (] ) =

<∑
8=1

log%(H(8) | x(8)) (11)

=

<∑
8=1

{
wT
H(8)

x(8) − log

∑
H′∈Y

exp(wT
H′x
(8))

}
(12)

Given the training examples {(x(8) , H(8))}<
8=1

, ℓ (] ) is a function of

] = {wH}.
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Optimization with Gradient

MLE is equivalent to minimize the Negative Log-Likelihood (NLL) as

NLL(] ) = −ℓ (] )

=

<∑
8=1

{
−wT

H(8)
x(8) + log

∑
H′∈Y

exp(wT
H′x)

}
then, the parameter wH associated with label H can be updated as

wH ← wH − � ·
%NLL({wH})

%wH
, ∀H ∈ Y (13)

where � is called learning rate.
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Optimization with Gradient (II)

Two questions answered by the update equation

(1) which direction?

(2) how far it should go?

wH ← wH − �︸︷︷︸
(2)

·
%NLL({wH})

%wH︸           ︷︷           ︸
(1)

(14)

[Jurafsky and Martin, 2022]
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Training Procedure

Steps for parameter estimation, given the current parameter {wH}

1. Compute the derivative

%NLL({wH})
%wH

, ∀H ∈ Y

2. Update parameters with

wH ← wH − � ·
%NLL({wH})

%wH
, ∀H ∈ Y

3. If not done, return to step 1
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Neural Network Demo

A simple demo with 2-dimensional inputs

https://phiresky.github.io/neural-network-demo/
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Sentiment Classification

A few training examples from Yelp Review

Label Text

5 Love the staff, love the meat, love the place.

Prepare for a long line around lunch or dinner

hours ...

5 Super simple place but amazing nonetheless. It’s

been around since the 30’s and they still serve

the same thing ...

1 Actually I would like to give them a big fat zero.

Any vet’s office that would tell ...

2 OK so first off the the burger was great as far as

the taste. But I got super sick after eating it

...
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Classification Configuration and Performance

Vocabulary size 17,490

Training size 40K

Development size 5K

Classifier Logistic regression

Regularization parameter � = 1

Training accuracy 88.48%

Development accuracy 61.22%

You can find the demo code via the link
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Interpretability: Global

rating features

1 worst awful horrible disgusting disgusted joke terrible

zero luck pathetic

2 meh mediocre tacky nope renovations cheddar sand-

which underwhelmed passable tasteless

3 feelings mains healthier remind hearty bleu overrated

unsure smelling rules

4 default hankering drawback bojangles pleasantly hazel-

nut customize gratuity excellent tremendously

5 phenomenal incredible amazing gem excellent pleas-

antly hesitate master magnificent spotless
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Interpretability: Local

The prediction on the following is 5

I love the service here , they ’ re on it !

After pre-processing, we remove the high-frequency word I and the

punctuation

feature classification weight

love 0.85

service 0.04

on 0.01

they -0.00

it -0.02

the -0.06

re -0.13

here -0.15
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What is a neural network?



Logistic Regression

I An unified form for H ∈ {−1,+1}

?(. = +1 | x) = 1

1 + exp(−〈w , x〉) (15)

I The sigmoid function �(0)with 0 ∈ ℝ

�(0) = 1

1 + exp(−0) (16)
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Graphical Representation

I A specific example of LR

?(. = 1 | x) = �(
4∑
9=1

F 9x·, 9) (17)

I The graphical representation of this LR model is

G1

G2

G3

G4

Input

layer

H

Output

layer

20



Capacity of a LR

Logistic regression gives a linear decision boundary

G1

G2

21



From LR to Neural Networks

Build upon logistic regression, a simple neural network can be

constructed as

I: = �(
3∑
9=1

F
(1)
:,9
G·, 9) : ∈ [ ] (18)

%(H = 1 | x) = �(
 ∑
:=1

F
(>)
:
I:) (19)

I x ∈ ℝ3
: 3-dimensional input

I H ∈ {−1,+1} (binary classification problem)

I {F(1)
:,8
} and {F(>)

:
} are two sets of the parameters, and

I  is the number of hidden units, each of them has the same form

as a LR.
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Graphical Representation

G1

G2

G3

G4

Input

layer I1

I2

I3

I4

I5

Hidden

layer

H

Output

layer

I Depth: 2 (two-layer neural network)

I Width: 5 (the maximal number of units in each layer)
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Hypothesis Space

The hypothesis space of neural networks is usually defined by the

architecture of the network, which includes

I the nodes in the network,

I the connections in the network, and

I the activation function (e.g., �)

G1

G2

G3

G4

Input

layer I1

I2

I3

I4

I5

Hidden

layer

H

Output

layer
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Other Activation Functions

(a) Sign function

(b) Tanh function

(c) ReLU function

[Jarrett et al., 2009]
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Mathematical Formulation

I Element-wise formulation

I: = �(
3∑
9=1

F
(1)
:,9
G 9) : ∈ [ ] (20)

%(H = +1 | x) = �(
 ∑
:=1

F
(>)
:
I:) (21)

I Matrix-vector formulation

z = �(Wx) (22)

%(H = +1 | x) = �(wTz) (23)

where W ∈ ℝ ×3
and w ∈ ℝ 
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Network Architecture

We are going to build a simple neural network for text classification.

It includes three layers as the previous example

I Input layer

I Hidden layer

I Output layer

G1

G2

G3

G4

Input

layer I1

I2

I3

I4

I5

Hidden

layer

H

Output

layer
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Example

Consider the following special case, where we have a 4-dimensional

BoW representation x ∈ ℝ4
and a weight matrix] ∈ ℝ5×4

]x =



0.1 0.3 0.7 0.9

0.2 0.8 0.3 0.5

0.4 0.8 0.6 0.1

0.7 0.2 0.9 0.2

0.4 0.5 0.8 0.9


·


0

1

0

1


(24)

=



0.3

0.8

0.8

0.2

0.5


+



0.9

0.5

0.1

0.2

0.9



(25)

I Each column vector in] corresponds one word in the BoW

representation

I The column vectors can be considered as representations of

words, in other words, word embeddings
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Output Layer

For the same text classification task, we use the following

configuration:

I Input dimension: x ∈ ℝ17 

I Hidden layer: h ∈ ℝ32

I Output layer: H ∈ {1, . . . , 5}

You can find an extremely simple implementation via the same link,

the dev accuracy is 65%

29



Why we need neural network mod-
els?



Distributed Representation

I Bag-of-words representations

Vocab coffee love like · · · tea you

love (0 1 0 · · · 0 0)

like (0 0 1 · · · 0 0)

I Distributed representations1

love (0.1 0.8 -1.0 0.3)

like (0.2 0.7 -0.9 0.3)

I Distributed representations allow simple algebraic operations for

semantic meanings

I E.g., the cosine value between two word embeddings measures

their semantic similarity

1I made up those numbers for illustration purpose
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The Value of Different Representations

Different representations lead to different levels of challenge in

machine learning

32



Advantage of Representation Learning

Driven by supervision signals, the model can learn some task-specific

information and encoded in word embeddings

Similar advantage exists in any other supervised learning tasks

[Bengio et al., 2013]
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Neural Network as Universal Approximators

Neural network as universal approximators

I With arbitrary width and bounded depth [Cybenko, 1989]

I With arbitrary depth and limited width [Kidger and Lyons, 2020]

34



Model Capacity via Function Composition

A Toy Example about Function Composition:

https://playground.tensorflow.org/

35
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Model Capacity via Function Composition

An example of function composition to extract high-level features

[Goodfellow et al., 2016] 36



Why neural network is a black
box?



Is Neural Network a Black Box?

Not exactly, we can analyze what it learns when the model is small

38



Example

Model interpretability: model predictions can be interpreted as

certain rules associated with inputs2

This is equivalent to a logistic regression model

2This is by no means a formal definition of interpretability
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With a Simple Neural Network

With randomly initialized weights (classifying all examples as

negative), the neural network (with one hidden layer) can easily learn

a classifier with 100%

With the visualization, it is not difficult to identify the second and the

third neurons are important.

40
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Distributed Representations (II)

With another set of randomly initialized weights (clasifying all

examples as negative), the learned classifier gives a very similar

decision boundary

With the visualization, it is not difficult to identify the second and the

third neurons are important.
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Distributed Representation (III)

I The contributions of the second and third neurons from the these

two neural networks are contradicted with each other

I Actually, it is still explainable, if we also consider the

contribution from the previous layer
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Try to Explain the Following Two Models?

I The neural network has more parameters than the task actually

needs

I The contributions of hidden neurons are randomly distributed

43



Number of Layers

Similar challenge for interpreting the contributions when we increase

the number of layers
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Question

Can we train a neural network that maintains good performance and

is also interpretable?

45
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