

CS 4501/6501 Interpretable Machine Learning

Interpretable Generalized Additive Models

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

Interpretability

Bad performance Good interpretability

- Three parameters (w_1, w_2, w_3)
- $y' = w_1 x_1 + w_2 x_2 + w_3 x_3$
- Contributions:

 $x_1: w_1 x_1$ $x_2: w_2 x_2$ $x_3: w_3 x_3$

Good performance Bad interpretability

- Millions of parameters
- $y' = f_w(x)$ (complex transformations)
- Model decision-making and feature attributions are unclear

The information of input features is mixed

Keep the information of individual features "locally"

Keep the information of individual features "locally"

Trade-off

Generalized additive models (GAMs)

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- Permit complex relationships between individual features (x_i) and the target (g(y))
- Exclude complex interactions between features

 $g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$

- $g(\cdot)$: link function
 - Identity: $g(y) = y \longrightarrow$ Regression
 - Logistic function: g(y) represents the probability on a class \longrightarrow Classification

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- $f_i(\cdot)$: shape function
 - Splines

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- $f_i(\cdot)$: shape function
 - Binary Trees

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- $f_i(\cdot)$: shape function
 - Binary Trees

10

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- $f_i(\cdot)$: shape function
 - Binary Trees

For interpretability, we control tree complexity (nodes, leaves, depth)

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- $f_i(\cdot)$: shape function
 - Bagged Trees (reduce the variance)

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- Training
 - Shape functions for individual features
 - Learning methods

5.

- Gradient Boosting
 - Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

- 1. $f_j \leftarrow 0, j = 1, \dots, n$ Initialize all shape functions as zero
- 2. for $m = 1, \dots, M$ do Loop over M iterations

3. for
$$j = 1, \dots, n$$
 do Loop over all features

4.
$$\mathcal{R} \leftarrow \left\{ x_{ij}, y_i - \sum_k f_k \right\}_{i=1}^N$$
 Calculate residuals

Learning shape function S: $x_j \rightarrow y$ using \mathcal{R} as training data

Learn the one-dimensional function to predict the residuals

6. $f_j \leftarrow f_j + S$ Update the shape function

- Gradient Boosting
 - Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM1.
$$f_j \leftarrow 0, j = 1, \cdots, n$$
Initialize all shape functions as zero2. for $m = 1, \cdots, M$ doLoop over M iterations3. for $j = 1, \cdots, n$ doLoop over all features4. $\mathcal{R} \leftarrow \left\{ x_{ij}, y_i - \sum_k f_k \right\}_{i=1}^N$ 5.Learning shape function S: $x_j \rightarrow y$ using \mathcal{R} as training data6. $f_j \leftarrow f_j + S$

- Gradient Boosting
 - Training data $\{(x_i, y_i)\}_{i=1}^N$

	i	<i>x</i> ₁	<i>x</i> ₂	•••	xj	•••	x _n	у
	1	<i>x</i> ₁₁	<i>x</i> ₁₂	• • •	<i>x</i> _{1<i>j</i>}	• • •	<i>x</i> _{1<i>n</i>}	<i>y</i> ₁
2	2	<i>x</i> ₂₁	<i>x</i> ₂₂	• • •	<i>x</i> _{2<i>j</i>}	• • •	<i>x</i> _{2n}	<i>y</i> ₂
	•••	•	:	:	:	:	:	•••
	N	x_{N1}	<i>x</i> _{N2}	•••	x_{Nj}	•••	x _{Nn}	\mathcal{Y}_N

X

- Gradient Boosting
 - Training data $\{(x_i, y_i)\}_{i=1}^N$

i	<i>x</i> ₁	<i>x</i> ₂	•••	x_j	•••	x _n	у
1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x_{1j}	•••	<i>x</i> _{1<i>n</i>}	<i>y</i> ₁
2	<i>x</i> ₂₁	<i>x</i> ₂₂	• • •	<i>x</i> _{2<i>j</i>}	• • •	<i>x</i> _{2<i>n</i>}	<i>y</i> ₂
:	:	:	•	•	•••	•	:
N	<i>x</i> _{<i>N</i>1}	<i>x</i> _{N2}	•••	x_{Nj}	•••	x _{Nn}	\mathcal{Y}_N

- Gradient Boosting
 - Training data $\{(x_i, y_i)\}_{i=1}^N$

i	<i>x</i> ₁	<i>x</i> ₂	•••	xj	•••	x _n	у
1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	<i>x</i> _{1<i>j</i>}	•••	<i>x</i> _{1<i>n</i>}	<i>y</i> ₁
2	<i>x</i> ₂₁	<i>x</i> ₂₂	•••	<i>x</i> _{2<i>j</i>}	•••	<i>x</i> _{2<i>n</i>}	<i>y</i> ₂
:	:	:	:	:	:	•	:
N	<i>x</i> _{<i>N</i>1}	<i>x</i> _{N2}	•••	x_{Nj}	•••	x _{Nn}	\mathcal{Y}_N

- Gradient Boosting
 - Training data $\{(x_i, y_i)\}_{i=1}^N$

		51751-1		f_j				Posiduals
i	<i>x</i> ₁	<i>x</i> ₂	•••	x _j	•••	x _n	y	Residuais
1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	<i>x</i> _{1<i>j</i>}	•••	<i>x</i> _{1<i>n</i>}	<i>y</i> ₁	$ \longrightarrow y_1 - \sum_k f_k $
2	<i>x</i> ₂₁	<i>x</i> ₂₂	•••	<i>x</i> _{2<i>j</i>}	•••	<i>x</i> _{2<i>n</i>}	<i>y</i> ₂	$\longrightarrow y_2 - \sum_k f_k$
:	:	:	:	:	:		:	
N	<i>x</i> _{<i>N</i>1}	<i>x</i> _{N2}	•••	x_{Nj}	•••	x _{Nn}	y_N	$] \longrightarrow y_N - \sum_k f_k$

(errors made by the current model)

• Gradient Boosting

Update
$$f_j$$
 based on $\{(x_{ij}, y_i - \sum_k f_k)\}_{i=1}^N$
 x y

- Learn a shape function S that fits: $x \rightarrow y$
- Update $f_j \leftarrow f_j + S$

• Gradient Boosting

Example

x	у	F
1	8	8
5	5	ſ
3	8	8
9	7	-

Residuals 8 - 7 = 1 5 - 3 = 2 8 - 7 = 17 - 2 = 5

• Gradient Boosting

Example

x	у
1	8
5	5
3	8
9	7

 f_j

• Gradient Boosting

Example

x	у	Re
1	8	8 -
5	5	5
3	8	8
9	7	7

Residuals 8 - 7 = 15 - 3 = 28 - 7 = 17 - 2 = 5

• Gradient Boosting

Example

x	у
1	8
5	5
3	8
9	7

Residuals

8 - (7 + 1) = 0 5 - (3 + 2) = 0 8 - (7 + 1) = 07 - (2 + 5) = 0 Update $f_i \leftarrow f_i + S$

• Gradient Boosting

Example

x	у
1	8
5	5
3	8
9	7

Residuals 8 - (7 + 1) = 0 5 - (3 + 2) = 0 8 - (7 + 1) = 07 - (2 + 5) = 0 Update $f_i \leftarrow f_i + S$

The model fits training data too well

We have low bias, but probably have high variance

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

• Gradient Boosting

Example

x	у
1	8
5	5
3	8
9	7

Residuals

 $8 - (7 + 0.1 \times 1) = 0.9$ $5 - (3 + 0.1 \times 2) = 1.8$ $8 - (7 + 0.1 \times 1) = 0.9$ $7 - (2 + 0.1 \times 5) = 4.5$ Update $f_j \leftarrow f_j + \gamma \times S$

Add a learning rate to scale the contribution of the new tree

- Gradient Boosting
 - Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM1.
$$f_j \leftarrow 0, j = 1, \cdots, n$$
Initialize all shape functions as zero2. for $m = 1, \cdots, M$ doLoop over M iterations3. for $j = 1, \cdots, n$ doLoop over all features4. $\mathcal{R} \leftarrow \left\{ x_{ij}, y_i - \sum_k f_k \right\}_{i=1}^N$ 5.Learning shape function S: $x_j \rightarrow y$ using \mathcal{R} as training data6. $f_j \leftarrow f_j + S$

Question?

- Backfitting
 - Learning tree or tree ensemble shape functions

Algorithm Backfitting for GAM

- 1. $f_j \leftarrow 0, j = 1, \dots, n$ Initialize all shape functions as zero
- 2. Learn f_1 using the training set $\{(x_{i1}, y_i)\}_{i=1}^N$
- 3. for $j = 2, \dots, n$ do Loop over rest features
- 4. $\mathcal{R} \leftarrow \left\{ x_{ij}, y_i \sum_{k=1}^{j-1} f_k \right\}_{i=1}^N$ Calculate residuals

5. Learning shape function S: $x_j \rightarrow y$ using \mathcal{R} as training data

Learn the one-dimensional function to predict the residuals

6. $f_j \leftarrow S$ Update the shape function

7. Retrain f_1 based on the residuals of other n-1 shape functions

- Least Squares
 - Learning spline shape functions

$$g(y) = \beta_1 x_1^2 + \beta_2 \sqrt{x_2} + \dots + \beta_n \sin x_n$$

- Reducing to fitting a linear model

$$y = X\beta$$

 $X_i = [x_{i1}^2, \sqrt{x_{i2}}, \dots, \sin x_{in}]$
 i^{th} example
Objective
 $\min ||y - X\beta||_2$

$$\boldsymbol{\beta} = [\beta_1, \beta_2, \cdots, \beta_n]^T$$

- Least Squares
 - Learning spline shape functions

$$g(y) = \beta_1 x_1^2 + \beta_2 \sqrt{x_2} + \dots + \beta_n \sin x_n$$

- Reducing to fitting a linear model

 $y = X\beta$ Objective $\underline{X_i} = [x_{i1}^2, \sqrt{x_{i2}}, \dots, \sin x_{in}]$ min $||y - X\beta||_2$ i^{th} example

$$\boldsymbol{\beta} = [\beta_1, \beta_2, \cdots, \beta_n]^T$$

Simple, but not flexible
Summary

Generalized additive models (GAMs)

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- Training
 - Shape functions for individual features: splines, trees, ensembles of trees
 - Learning methods: Least Squares, Gradient Boosting, Backfitting

Summary

Generalized additive models (GAMs)

$$g(y) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

- Training
 - Shape functions for individual features: splines, trees, ensembles of trees
 - Learning methods: Least Squares, Gradient Boosting, Backfitting
- Interpretability

Application

- Dataset: "Concrete" (Blast Furnace Slag, Fly Ash, Superplasticizer...)
- Task: predicting the compressive strength of concrete
- Models:

Shape	Least	Gradient	Backfitting	
Function	Squares	Boosting	Dackinting	
Splines	P-LS/P-IRLS	BST-SP	BF-SP	
Single Tree	N/A	BST-TRx	BF-TR	
Bagged Trees	N/A	BST-bagTRx	BF-bagTR	
Boosted Trees	N/A	BST-TRx	BF-bstTRx	
Boosted Bagged Trees	N/A	BST-bagTRx	BF-bbTRx	

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." *Proceedings of the* 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

Empirical Results

- GAMs perform better than linear or logistic regression (without feature shaping)
- Tree-based shaping methods are more accurate than spline-based methods
- Bagged-trees with 2-4 leaves as shape functions in combination with gradient boosting as learning method perform better
- Controlling the complexity of trees can avoid overfitting

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." *Proceedings of the* 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

Interpretation

Shapes of features for the "Concrete" dataset (versus the compressive strength of concrete)

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2012.

Question?

Limitation: GAMs do not consider feature dependency

ModelGoal $f_1(x_1) + f_2(x_2)$ Gap $f_1(x_1) + f_2(x_2) + x_1x_2 + \cdots$

Limitation: GAMs do not consider feature dependency

Definitions

- Dataset $D = \{(x_i, y_i)\}_{i=1}^N$
- $\boldsymbol{x}_i = [x_{i1}, \cdots, x_{in}]$ with n features
- *y_i* is the response
- $\mathbf{x} = (x_1, \dots, x_n)$ denote the features in the dataset
- $U_1 = \{\{i\} | 1 \le i \le n\}, U_2 = \{\{i, j\} | 1 \le i < j \le n\}, U = U_1 \cup U_2$, i.e., U contains all indices for all features and pairs of features
- For any $u \in U$, let H_u denote the Hilbert space of $f_u(x_u)$
- $H = \sum_{u \in U} H_u$, $H_1 = \sum_{u \in U_1} H_u$, $H_2 = \sum_{u \in U_2} H_u$

- We have known how to learn shape functions for GAMs
- Applicable to two-dimensional shape functions f_u , $u = \{i, j\}$

Challenge

$$\sum f_i(x_i) + \sum f_{i,j}(x_i, x_j)$$

n features $\longrightarrow O(n^2)$ features interactions

$\mathbf{GA}^{2}\mathbf{M}$

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x)\right)^2\right]$$

- 5. $R \leftarrow y F(\mathbf{x})$
- 6. for all $u \in Z$ do
- $7. F_u \leftarrow E[R \mid x_u]$
- 8. $u^* \leftarrow \arg\min_{u \in \mathbb{Z}} \frac{1}{2} E[(R f_u(x_u))^2]$
- 9. $S \leftarrow S \cup \{u^*\}$
- 10. $Z \leftarrow Z \{u^*\}$

Algorithm GA ² M	Learning shape functions for all single features $(f_i(x_i))$ and the selected feature pairs $(f_{i,i}(x_i, x_i))$		
1. $S \leftarrow \emptyset$ The set of the selected pairs	When $S = \emptyset$, F is the GAM.		
2. $Z \leftarrow U_2$ The set of the remaining pairs			
3. While not converge do			
4. $F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(\mathbf{x}) \right)^2 \right] $	he best additive model F so far in Hilbert bace $H_1 + \sum_{u \in S} H_u$		
5. $R \leftarrow y - F(\mathbf{x})$			
6. for all $u \in Z$ do			
7. $F_u \leftarrow E[R \mid x_u]$			
$u^* \leftarrow \arg\min_{u \in \mathbb{Z}} \frac{1}{2} E[(R - f_u(x_u))^2]$			
9. $S \leftarrow S \cup \{u^*\}$	$S \leftarrow S \cup \{u^*\}$		
10. $Z \leftarrow Z - \{u^*\}$			

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x)\right)^2\right]$$

The best additive model F so far in Hilbert space $H_1 + \sum_{u \in S} H_u$

5. $R \leftarrow y - F(\mathbf{x})$ Calculate residual

6. **for** all
$$u \in Z$$
 do

- $7. F_u \leftarrow E[R \mid x_u]$
- 8. $u^* \leftarrow \arg\min_{u \in \mathbb{Z}} \frac{1}{2} E[(R f_u(x_u))^2]$
- 9. $S \leftarrow S \cup \{u^*\}$
- 10. $Z \leftarrow Z \{u^*\}$

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x)\right)^2\right]$$
 The best additive model F so far in Hilbert space $H_1 + \sum_{u \in S} H_u$

5.
$$R \leftarrow y - F(\mathbf{x})$$
 Calculate residual

- 6. for all $u \in Z$ do Loop over all remaining feature pairs
- 7. $F_u \leftarrow E[R \mid x_u]$ Build an interaction model on the residual

8.
$$u^* \leftarrow \arg \min_{u \in \mathbb{Z}} \frac{1}{2} E[(R - f_u(x_u))^2]$$

9.
$$S \leftarrow S \cup \{u^*\}$$

10. $Z \leftarrow Z - \{u^*\}$

Learning a shape function for each feature pair

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x)\right)^2\right]$$
 The best additive model F so far in space $H_1 + \sum_{u \in S} H_u$

- 5. $R \leftarrow y F(\mathbf{x})$ Calculate residual
- 6. for all $u \in Z$ do Loop over all remaining feature pairs
- 7. $F_u \leftarrow E[R \mid x_u]$ Build an interaction model on the residual
- 8. $u^* \leftarrow \arg \min_{u \in \mathbb{Z}} \frac{1}{2} E[(R f_u(x_u))^2]$ Select the best feature pair
- 9. $S \leftarrow S \cup \{u^*\}$
- 10. $Z \leftarrow Z \{u^*\}$

Hilbert

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x)\right)^2\right]$$
 The best additive model F so far in Hilbert space $H_1 + \sum_{u \in S} H_u$

- 5. $R \leftarrow y F(\mathbf{x})$ Calculate residual
- 6. for all $u \in Z$ do Loop over all remaining feature pairs
- 7. $F_u \leftarrow E[R \mid x_u]$ Build an interaction model on the residual
- 8. $u^* \leftarrow \arg \min_{u \in \mathbb{Z}} \frac{1}{2} E[(R f_u(x_u))^2]$ Select the best feature pair
- 9. $S \leftarrow S \cup \{u^*\}$ Put the best feature pair in S
- 10. $Z \leftarrow Z \{u^*\}$ Remove that from Z

$GA^{2}M$

Algorithm GA²M

- 1. $S \leftarrow \emptyset$ The set of the selected pairs
- 2. $Z \leftarrow U_2$ The set of the remaining pairs
- 3. While not converge do

4.
$$F \leftarrow \arg \min_{F \in H_1 + \sum_{u \in S} H_u} \frac{1}{2} E\left[\left(y - F(x) \right)^2 \right]$$
 The best additive model F so far in Hilbert space $H_1 + \sum_{u \in S} H_u$

- 5. $R \leftarrow y F(\mathbf{x})$ Calculate residual
- 6. for all $u \in Z$ do Loop over all remaining feature pairs $\longrightarrow O(n^2)$
- 7. $F_u \leftarrow E[R \mid x_u]$ Build an interaction model on the residual
- 8. $u^* \leftarrow \arg \min_{u \in Z} \frac{1}{2} E[(R f_u(x_u))^2]$ Select the best feature pair
- 9. $S \leftarrow S \cup \{u^*\}$ Put the best feature pair in *S*
- 10. $Z \leftarrow Z \{u^*\}$ Remove that from Z

See a fast interaction detection algorithm in [Lou et al., 2013]

Question?

"Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission"

Caruana et al., KDD 2015

- In the mid 90's, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the application of machine learning to important problems in healthcare such as predicting pneumonia risk
- **Goal**: predict the probability of death (POD) for patients with pneumonia
- High-risk: patients could be admitted to the hospital
- Low-risk: patients were treated as outpatients

- In the mid 90's, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the application of machine learning to important problems in healthcare such as predicting pneumonia risk
- **Goal**: predict the probability of death (POD) for patients with pneumonia
- High-risk: patients could be admitted to the hospital
- Low-risk: patients were treated as outpatients

Models

Logistic regression Rule-based learning k-nearest neighbor

Neural networks

- In the mid 90's, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the application of machine learning to important problems in healthcare such as predicting pneumonia risk
- **Goal**: predict the probability of death (POD) for patients with pneumonia
- High-risk: patients could be admitted to the hospital
- Low-risk: patients were treated as outpatients

Models

Logistic regression

Rule-based learning

k-nearest neighbor

Neural networks

AUC=0.86 (Best performance)

- In the mid 90's, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the application of machine learning to important problems in healthcare such as predicting pneumonia risk
- **Goal**: predict the probability of death (POD) for patients with pneumonia
- High-risk: patients could be admitted to the hospital
- Low-risk: patients were treated as outpatients

Models

. . .

Logistic regressionAUC=0.77 (safer to use on patients)Rule-based learningk-nearest neighborNeural networksAUC=0.86 (Best performance)

62

The rule-based model learned a rule:

 $HasAsthama(x) \implies LowerRisk(x)$

Rule-based models are interpretable
if (chance_of_rain > 0.75)
{ umbrella <- "yes" }
else { umbrella <- "no" }</pre>

The rule-based model learned a rule:

HasAsthama(x) \implies LowerRisk(x)

The rule-based model learned a rule:

 $HasAsthama(x) \implies LowerRisk(x)$

counterintuitive

The model captures a true pattern in the training data:

Patients: asthma + pneumonia

The aggressive care lowered the risk of dying from pneumonia

The rule-based model learned a rule:

 $HasAsthama(x) \implies LowerRisk(x)$

Asthmatics have much higher risk!

It would be dangerous if the model predicts low risk on patients who have not been hospitalized

How about other potential patterns?

Pregnancy \implies Lower Risk ?

How about other potential patterns?

```
Pregnancy \implies Lower Risk ?
```

MUST understand ML models in healthcare. Otherwise, models may hurt patients because of true patterns in data!

Generalized Additive Models

• Better prediction performance than logistic regression

(capture more data patterns)

• Interpretable

70

Case Study: Pneumonia Risk

- There are 46 features describing each patient
- Bagged trees with gradient boosting

-	age	C			
-	gender	-			
-	diabetes mellitus	-			
-	asthma	-			
-	cancer	-			
-	number of diseases	C			
-	history of seizures	-			
-	renal failure	-			
-					
s					
С	wheezing	-			
-	stridor	-			
С	heart murmur	-			
-	temperature	C			
С					
Laboratory findings					
-	BUN level	C			
С	creatinine level	C			
\mathbf{C}	albumin level	C			
\mathbf{C}	WBC count	C			
С	pH	C			
\mathbf{C}	pCO2	C			
С					
Chest X-ray findings					
-	lung infiltrate	-			
-	pneumothorax	-			
-	chest mass	-			
-					
		 age gender diabetes mellitus asthma cancer number of diseases history of seizures renal failure renal failure s C wheezing stridor C heart murmur temperature C reatinine level C albumin level C WBC count C pH C pCO2 C lung infiltrate pneumothorax chest mass 			

Prediction Performance

AUC for different learning methods

Model	Pneumonia
Logistic Regression	0.8432
GAM	0.8542
GA^2M	0.8576
Random Forests	0.8460
LogitBoost	0.8493

Interpretation

Older people have higher risk

GAMs also found the pattern: asthma lowers the risk

(Blood Urea Nitrogen)

Most patients have BUN=0 because, as in many medical datasets, if the variable is not measured or assumed normal it is coded as 0

(Blood Urea Nitrogen)

BUN levels below 30 appear to be low risk, while levels from 50-200 indicate higher risk

Having cancer significantly increases the risk of dying from pneumonia

Chronic lung disease and a history of chest pain both lower risk (similar problem as asthma)

-1

-0.5

0.5

0

age vs. cancer

-0.1 -0.2

1

Old people with high respiration rate have the highest risk

- Risk is highest for the youngest patients -
- It declines for patients who acquire cancer later in life
- For patients without cancer, risk rises as expected with age

Takeaway

- If a model contains a modest number of terms (e.g., less than 50), it is best to show terms in the model to experts in the order they are most familiar with
- When the number of terms grows large, it is best to provide a well-defined ordering of the terms for a patient (from terms that increase risk most to terms that decrease risk most)

Question?

Reference

- Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2012.
- Lou, Yin, et al. "Accurate intelligible models with pairwise interactions." *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*. 2013.
- Caruana, Rich, et al. "Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission." *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*. 2015.