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Interpretable Generalized Additive Models 
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Interpretability

• Three parameters (𝑤1, 𝑤2, 𝑤3)

• 𝑦′ = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

• Contributions:

𝑥1: 𝑤1𝑥1
𝑥2: 𝑤2𝑥2
𝑥3: 𝑤3𝑥3

• Millions of parameters

• 𝒚′ = 𝑓𝒘 𝒙 (complex transformations)

• Model decision-making and feature 

attributions are unclear

Bad performance
Good interpretability 

Good performance 
Bad interpretability 
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Trade-off

𝑥1

𝑥2

𝑥𝑛

⋯

Input Layer Hidden Layers Output Layer

⋯ ⋯ ⋯

𝑦

The information of input features is mixed
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Trade-off

𝑥1

𝑥2

𝑥𝑛

⋯

Input Layer Hidden Layers Output Layer

+

⋯ ⋯ ⋯⋯
𝑦

Keep the information of individual features “locally”
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Trade-off

Interpretability

𝑥1

𝑥2

𝑥𝑛

⋯

Input Layer Hidden Layers Output Layer

+

⋯ ⋯ ⋯⋯
𝑦

Keep the information of individual features “locally”

Users can understand 
the contributions of 
individual features
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Trade-off

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• Permit complex relationships between individual features (𝑥𝑖) and the 

target (𝑔 𝑦 )

• Exclude complex interactions between features
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑔 ∙ : link function

- Identity: 𝑔 𝑦 = 𝑦 Regression

- Logistic function: 𝑔 𝑦 represents the probability on a class             Classification

𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)

(𝐿 = 1, 𝑘 = 1, 𝑥0 = 0)
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑓𝑖 ∙ : shape function

- Splines

𝑥2 𝑥 sin 𝑥

𝑥 𝑥 𝑥

𝑦



9

GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑓𝑖 ∙ : shape function

- Binary Trees

𝑥 < 5

yes no

𝑦 = 1 𝑦 = −1

𝑦

𝑥
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑓𝑖 ∙ : shape function

- Binary Trees

𝑥 < 5

yes no

𝑦 = 1

𝑦 = 0

𝑥 < 7

yes no

𝑦 = −1

𝑦

𝑥
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑓𝑖 ∙ : shape function

- Binary Trees

𝑥 < 5

yes no

𝑦 = 1

𝑦 = 0

𝑥 < 7

yes no

𝑦 = −1

For interpretability, we 
control tree complexity 
(nodes, leaves, depth) 

𝑦

𝑥
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• 𝑓𝑖 ∙ : shape function

- Bagged Trees (reduce the variance)

1

𝐵 ( +⋯+ )
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GAM

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• Training

- Shape functions for individual features

- Learning methods
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Learning GAM

• Gradient Boosting

- Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1.

2.

3.

4.

5.

6.

𝑓𝑗 ← 0, 𝑗 = 1,⋯ , 𝑛

for 𝑚 = 1,⋯ ,𝑀 do

for 𝑗 = 1,⋯ , 𝑛 do

ℛ ← 𝑥𝑖𝑗 , 𝑦𝑖 −෍
𝑘
𝑓𝑘

𝑖=1

𝑁

Learning shape function S: 𝑥𝑗 → 𝑦 using ℛ as training data

𝑓𝑗 ← 𝑓𝑗 + 𝑆

Initialize all shape functions as zero

Loop over M iterations

Loop over all features

Calculate residuals

Learn the one-dimensional 
function to predict the residuals

Update the shape function
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Learning GAM

• Gradient Boosting

- Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1.

2.

3.

4.

5.

6.

𝑓𝑗 ← 0, 𝑗 = 1,⋯ , 𝑛

for 𝑚 = 1,⋯ ,𝑀 do

for 𝑗 = 1,⋯ , 𝑛 do

Learning shape function S: 𝑥𝑗 → 𝑦 using ℛ as training data

𝑓𝑗 ← 𝑓𝑗 + 𝑆

Initialize all shape functions as zero

Loop over M iterations

Loop over all features

Learn the one-dimensional 
function to predict the residuals

Update the shape function

ℛ ← 𝑥𝑖𝑗 , 𝑦𝑖 −෍
𝑘
𝑓𝑘

𝑖=1

𝑁

Calculate residuals
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Learning GAM

• Gradient Boosting

𝑖 𝑥1 𝑥2 ⋯ 𝑥𝑗 ⋯ 𝑥𝑛 𝑦

1 𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛 𝑦1

2 𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑛 𝑦2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑁 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑗 ⋯ 𝑥𝑁𝑛 𝑦𝑁

Training data 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝒙2
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Learning GAM

• Gradient Boosting

𝑖 𝑥1 𝑥2 ⋯ 𝑥𝑗 ⋯ 𝑥𝑛 𝑦

1 𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛 𝑦1

2 𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑛 𝑦2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑁 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑗 ⋯ 𝑥𝑁𝑛 𝑦𝑁

Training data 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Learning GAM

• Gradient Boosting

𝑖 𝑥1 𝑥2 ⋯ 𝑥𝑗 ⋯ 𝑥𝑛 𝑦

1 𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛 𝑦1

2 𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑛 𝑦2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑁 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑗 ⋯ 𝑥𝑁𝑛 𝑦𝑁

Training data 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Learning GAM

• Gradient Boosting

𝑖 𝑥1 𝑥2 ⋯ 𝑥𝑗 ⋯ 𝑥𝑛 𝑦

1 𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛 𝑦1

2 𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑛 𝑦2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑁 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑗 ⋯ 𝑥𝑁𝑛 𝑦𝑁

Training data 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝑦1 −෍
𝑘
𝑓𝑘

Residuals
𝑓𝑗

𝑦2 −෍
𝑘
𝑓𝑘

𝑦𝑁 −෍
𝑘
𝑓𝑘

⋮

(errors made by the 
current model)
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Learning GAM

• Gradient Boosting

Update 𝑓𝑗 based on 𝑥𝑖𝑗 , 𝑦𝑖 − σ𝑘 𝑓𝑘 𝑖=1

𝑁

- Learn a shape function S that fits: 𝑥 → 𝑦

- Update 𝑓𝑗 ← 𝑓𝑗 + 𝑆

𝑥 𝑦
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

𝑥 < 4

yes no

𝑦 = 7

𝑦 = 3

𝑥 < 6

yes no

𝑦 = 2

Residuals

8 − 7 = 1

5 − 3 = 2

8 − 7 = 1

7 − 2 = 5

𝑓𝑗
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

𝑥 < 4

yes no

𝑦 = 7

𝑦 = 3

𝑥 < 6

yes no

𝑦 = 2

Residuals

8 − 7 = 1

5 − 3 = 2

8 − 7 = 1

7 − 2 = 5

𝑓𝑗
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

𝑥 < 4

yes no

1

2

𝑥 < 6

yes no

5

Residuals

8 − 7 = 1

5 − 3 = 2

8 − 7 = 1

7 − 2 = 5

𝑆
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

Residuals

8 − (7 + 1) = 0

5 − 3 + 2 = 0

8 − 7 + 1 = 0

7 − 2 + 5 = 0

+

𝑆𝑓𝑗

Update 𝑓𝑗 ← 𝑓𝑗 + 𝑆
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

Residuals

8 − (7 + 1) = 0

5 − 3 + 2 = 0

8 − 7 + 1 = 0

7 − 2 + 5 = 0

+

𝑆𝑓𝑗

Update 𝑓𝑗 ← 𝑓𝑗 + 𝑆

Do we learn a 
perfect model?
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Learning GAM

The model fits training data too well

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

We have low bias, but 
probably have high variance

http://scott.fortmann-roe.com/docs/BiasVariance.html
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Learning GAM

• Gradient Boosting

Example

𝑥 𝑦

1 8

5 5

3 8

9 7

Residuals

8 − (7 + 0.1 × 1) = 0.9

5 − 3 + 0.1 × 2 = 1.8

8 − 7 + 0.1 × 1 = 0.9

7 − 2 + 0.1 × 5 = 4.5

+

𝑆𝑓𝑗

Update 𝑓𝑗 ← 𝑓𝑗 + 𝛾 × 𝑆

Add a learning rate to scale the 
contribution of the new tree

𝛾 ×



28

Learning GAM

• Gradient Boosting

- Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1.

2.

3.

4.

5.

6.

𝑓𝑗 ← 0, 𝑗 = 1,⋯ , 𝑛

for 𝑚 = 1,⋯ ,𝑀 do

for 𝑗 = 1,⋯ , 𝑛 do

Learning shape function S: 𝑥𝑗 → 𝑦 using ℛ as training data

𝑓𝑗 ← 𝑓𝑗 + 𝑆

Initialize all shape functions as zero

Loop over M iterations

Loop over all features

Learn the one-dimensional 
function to predict the residuals

Update the shape function

ℛ ← 𝑥𝑖𝑗 , 𝑦𝑖 −෍
𝑘
𝑓𝑘

𝑖=1

𝑁

Calculate residuals
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Learning GAM

𝑥1 𝑥2 𝑥𝑗 𝑥𝑛⋯ ⋯

𝑚 = 1
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Learning GAM

𝑥1 𝑥2 𝑥𝑗 𝑥𝑛⋯ ⋯

𝑚 = 1

𝑚 = 2
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Learning GAM

𝑥1 𝑥2 𝑥𝑗 𝑥𝑛⋯ ⋯

𝑚 = 1

𝑚 = 2

⋯

𝑚 = 𝑀
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Learning GAM

𝑥1 𝑥2 𝑥𝑗 𝑥𝑛⋯ ⋯

𝑚 = 1

𝑚 = 2

⋯

𝑚 = 𝑀
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Question?



34

Learning GAM

• Backfitting

- Learning tree or tree ensemble shape functions

Algorithm Backfitting for GAM

1.

2.

3.

4.

5.

6.

𝑓𝑗 ← 0, 𝑗 = 1,⋯ , 𝑛

Learn 𝑓1 using the training set 𝑥𝑖1, 𝑦𝑖 𝑖=1
𝑁

for 𝑗 = 2,⋯ , 𝑛 do

ℛ ← 𝑥𝑖𝑗 , 𝑦𝑖 −෍
𝑘=1

𝑗−1

𝑓𝑘
𝑖=1

𝑁

Learning shape function S: 𝑥𝑗 → 𝑦 using ℛ as training data

𝑓𝑗 ← 𝑆

Initialize all shape functions as zero

Loop over rest features

Calculate residuals

Learn the one-dimensional 
function to predict the residuals

Update the shape function

7. Retrain 𝑓1 based on the residuals of other 𝑛 − 1 shape functions 
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Learning GAM

• Least Squares

- Learning spline shape functions

- Reducing to fitting a linear model 

𝒚 = 𝑿𝜷

𝑿𝒊 = 𝑥𝑖1
2, 𝑥𝑖2, ⋯ , sin 𝑥𝑖𝑛

𝜷 = 𝛽1, 𝛽2, ⋯ , 𝛽𝑛
𝑇

𝑖𝑡ℎ example

Objective

min 𝒚 − 𝑿𝜷 2

𝑔 𝑦 = 𝛽1𝑥1
2 + 𝛽2 𝑥2 +⋯+ 𝛽𝑛 sin 𝑥𝑛
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Learning GAM

• Least Squares

- Learning spline shape functions

- Reducing to fitting a linear model 

𝒚 = 𝑿𝜷

𝑿𝒊 = 𝑥𝑖1
2, 𝑥𝑖2, ⋯ , sin 𝑥𝑖𝑛

𝜷 = 𝛽1, 𝛽2, ⋯ , 𝛽𝑛
𝑇

𝑖𝑡ℎ example

Objective

min 𝒚 − 𝑿𝜷 2

𝑔 𝑦 = 𝛽1𝑥1
2 + 𝛽2 𝑥2 +⋯+ 𝛽𝑛 sin 𝑥𝑛

Simple, but not flexible
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Summary

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• Training

- Shape functions for individual features: splines, trees, ensembles of trees

- Learning methods: Least Squares, Gradient Boosting, Backfitting
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Summary

Generalized additive models (GAMs)

𝑔 𝑦 = 𝑓1 𝑥1 + 𝑓2 𝑥2 +⋯+ 𝑓𝑛 𝑥𝑛

• Training

- Shape functions for individual features: splines, trees, ensembles of trees

- Learning methods: Least Squares, Gradient Boosting, Backfitting

• Interpretability

𝑥1

𝑥𝑛

⋯ 𝑓1 𝑥1

𝑓𝑛 𝑥𝑛
⋯

contributions
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Application

• Dataset: “Concrete” (Blast Furnace Slag, Fly Ash, Superplasticizer…)

• Models: 

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the 
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

• Task: predicting the compressive strength of concrete



40

Empirical Results

• GAMs perform better than linear or logistic regression 
(without feature shaping)

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the 
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

• Tree-based shaping methods are more accurate 
than spline-based methods

• Bagged-trees with 2-4 leaves as shape functions in 
combination with gradient boosting as learning 
method perform better

• Controlling the complexity of trees can avoid 
overfitting 

(2 leaves) (16 leaves)
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Interpretation

Shapes of features for the “Concrete” dataset (versus the compressive strength 
of concrete)

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the 
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

(Splines)

(Bagged 
trees)
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Question?
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GA M
2

Limitation: GAMs do not consider feature dependency

𝑓1 𝑥1 + 𝑓2 𝑥2 𝑓1 𝑥1 + 𝑓2 𝑥2 + 𝑥1𝑥2 +⋯
Gap

Model Goal
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GA M
2

Limitation: GAMs do not consider feature dependency

Add two-dimensional interactions

GA M
2

෍𝑓𝑖 𝑥𝑖 +෍𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗

𝑓1 𝑥1 + 𝑓2 𝑥2 𝑓1 𝑥1 + 𝑓2 𝑥2 + 𝑥1𝑥2 +⋯
Gap

Model Goal
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GA M
2

Definitions

• Dataset 𝐷 = 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁

• 𝒙𝑖 = 𝑥𝑖1, ⋯ , 𝑥𝑖𝑛 with 𝑛 features

• 𝑦𝑖 is the response

• 𝒙 = 𝑥1, ⋯ , 𝑥𝑛 denote the features in the dataset

• 𝑈1 = 𝑖 1 ≤ 𝑖 ≤ 𝑛 ,𝑈2 = 𝑖, 𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 , 𝑈 = 𝑈1 ∪ 𝑈2, i.e., 𝑈

contains all indices for all features and pairs of features

• For any 𝑢 ∈ 𝑈, let 𝐻𝑢 denote the Hilbert space of 𝑓𝑢 𝑥𝑢

• 𝐻 = σ𝑢∈𝑈𝐻𝑢, 𝐻1 = σ𝑢∈𝑈1
𝐻𝑢 , 𝐻2 = σ𝑢∈𝑈2

𝐻𝑢
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GA M
2

GA M
2

𝐹 𝒙 = σ𝑢∈𝑈 𝑓𝑢 𝑥𝑢

Objective min
𝐹∈𝐻

𝐸 𝐿(𝑦, 𝐹 𝒙 )

𝐿: non-negative convex loss function

regression classification

Squared loss Cross-entropy loss

−𝑦 log 𝐹 𝒙 − (1 − 𝑦) log(1 − 𝐹 𝒙 )(𝑦 − 𝐹 𝒙 )𝟐
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GA M
2

• We have known how to learn shape functions for GAMs

• Applicable to two-dimensional shape functions 𝑓𝑢, 𝑢 = {𝑖, 𝑗}

Splines

𝑓1,2 = 𝑥1𝑥2

𝑥1

𝑥2

Trees

𝑥1 < 5

yes no

𝑦 = 1 𝑦 = 0

𝑥2 < 7

yes no

𝑦 = −1

𝑥2 < 3

yes no

𝑦 = 2
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GA M
2

Challenge

𝑛 features 𝑂(𝑛2) features interactions

How to find true 
feature interactions?

෍𝑓𝑖 𝑥𝑖 +෍𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗
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GA M
2

Algorithm 

1.

2.

3.

4.

5.

6.

𝑆 ← ∅
𝑍 ← 𝑈2

While not converge do

The set of the selected pairs

GA M
2

7.

8.

9.

10.

𝐹 ← arg min
𝐹∈𝐻1+σ𝑢∈𝑆 𝐻𝑢

1

2
𝐸 𝑦 − 𝐹 𝒙

2

𝑅 ← 𝑦 − 𝐹 𝒙

for all 𝑢 ∈ 𝑍 do

𝐹𝑢 ← 𝐸ൣ𝑅 | 𝑥𝑢]

𝑢∗ ← argmin
𝑢∈𝑍

1

2
𝐸 (𝑅 − 𝑓𝑢 𝑥𝑢 )2

𝑆 ← 𝑆 ∪ 𝑢∗

𝑍 ← 𝑍 − 𝑢∗

The set of the remaining pairs
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GA M
2

Algorithm 

1.
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6.
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𝑍 ← 𝑈2
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GA M
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𝑆 ← 𝑆 ∪ 𝑢∗

𝑍 ← 𝑍 − 𝑢∗

The set of the remaining pairs

The best additive model 𝐹 so far in Hilbert 
space 𝐻1 + σ𝑢∈𝑆𝐻𝑢

Learning shape functions for all 
single features (𝑓𝑖 𝑥𝑖 ) and the 

selected feature pairs (𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗 ). 

When 𝑆 = ∅, 𝐹 is the GAM.
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Calculate residual
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Calculate residual

Build an interaction model on the residual

Loop over all remaining feature pairs

Learning a shape function 
for each feature pair
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Calculate residual

Build an interaction model on the residual

Loop over all remaining feature pairs

Select the best feature pair
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Calculate residual

Build an interaction model on the residual

Loop over all remaining feature pairs

Select the best feature pair

Put the best feature pair in 𝑆

Remove that from 𝑍
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𝑆 ← ∅
𝑍 ← 𝑈2

While not converge do
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space 𝐻1 + σ𝑢∈𝑆𝐻𝑢

Calculate residual

Build an interaction model on the residual

Loop over all remaining feature pairs

Select the best feature pair

Put the best feature pair in 𝑆

Remove that from 𝑍

𝑂(𝑛2)

See a fast interaction 
detection algorithm in 
[Lou et al., 2013]



56

GA M
2

GAM

𝑥1 𝑥2

𝑥𝑛

⋯

GA M
2

𝑆 (selected pairs)
𝑍 (Remaining pairs)

(𝑥𝑖 , 𝑥𝑗)

Residuals

Select a feature pair 
that minimizes the 
residual

1

2

3
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Question?
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Application

“Intelligible models for healthcare: Predicting pneumonia risk and 
hospital 30-day readmission”

Caruana et al., KDD 2015 
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Background

• In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the 
application of machine learning to important problems in healthcare such as predicting 
pneumonia risk

• Goal: predict the probability of death (POD) for patients with pneumonia
• High-risk: patients could be admitted to the hospital
• Low-risk: patients were treated as outpatients
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Background

• In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the 
application of machine learning to important problems in healthcare such as predicting 
pneumonia risk

• Goal: predict the probability of death (POD) for patients with pneumonia
• High-risk: patients could be admitted to the hospital
• Low-risk: patients were treated as outpatients

Models

Logistic regression

Rule-based learning

k-nearest neighbor

Neural networks

…

AUC=0.86 (Best performance)

AUC=0.77 (safer to use on patients)
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Problem

Rule-based models are interpretable
if (chance_of_rain > 0.75) 
{ umbrella <- "yes" }
else { umbrella <- "no" }

The rule-based model learned a rule:

HasAsthama(x)  ⟹ LowerRisk(x)
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Problem

The rule-based model learned a rule:

HasAsthama(x)  ⟹ LowerRisk(x) counterintuitive

The model captures a true pattern in the training data: 

Patients: 
asthma + 
pneumonia 

Hospital (ICU)
The aggressive care 
lowered the risk of 
dying from pneumonia
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Problem

The rule-based model learned a rule:

HasAsthama(x)  ⟹ LowerRisk(x)

Asthmatics have much higher risk!

It would be dangerous if the model predicts low 
risk on patients who have not been hospitalized
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Problem

How about other potential patterns?

Pregnancy  ⟹ Lower Risk ?
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Problem

How about other potential patterns?

Pregnancy  ⟹ Lower Risk ?

MUST understand ML models in healthcare. 
Otherwise, models may hurt patients 
because of true patterns in data! 
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Generalized Additive Models

• Better prediction performance than logistic regression 

(capture more data patterns)

• Interpretable
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Case Study: Pneumonia Risk

• There are 46 features 
describing each patient

• Bagged trees with 
gradient boosting



71

Prediction Performance

AUC for different learning methods AUC: Area Under the ROC Curve

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Interpretation

Older people have 
higher risk

(Blood Urea Nitrogen)
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Interpretation

GAMs also found the 
pattern: asthma lowers 
the risk

(Blood Urea Nitrogen)
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Interpretation

GAMs also found the 
pattern: asthma lowers 
the risk

(Blood Urea Nitrogen)

Repair: eliminate this 
term
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Interpretation

(Blood Urea Nitrogen)

Most patients have BUN=0 because, 
as in many medical datasets, if the 
variable is not measured or assumed 
normal it is coded as 0
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Interpretation

(Blood Urea Nitrogen)

BUN levels below 30 appear to 
be low risk, while levels from 
50-200 indicate higher risk
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Interpretation

(Blood Urea Nitrogen) Having cancer significantly 
increases the risk of dying 
from pneumonia
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Interpretation

(Blood Urea Nitrogen)

Chronic lung disease and a
history of chest pain both lower 
risk (similar problem as asthma)
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Interpretation

- Risk is highest for the youngest patients 
- It declines for patients who acquire cancer 

later in life
- For patients without cancer, risk rises as 

expected with age

Old people with high respiration 
rate have the highest risk
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Takeaway

• If a model contains a modest number of terms (e.g., less than 50), it is 
best to show terms in the model to experts in the order they are most 
familiar with

• When the number of terms grows large, it is best to provide a well-defined 
ordering of the terms for a patient (from terms that increase risk most to 
terms that decrease risk most)
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Question?
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