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Interpretability

Bad performance Good performance
Good interpretability Bad interpretability
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* Three parameters (w1, w,, ws) « Millions of parameters

o Y =wix; + WoXy + W33 * vy = f,(x) (complex transformations)

e Contributions:  Model decision-making and feature
X1:WiXy attributions are unclear
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X3:W3X3




Trade-off

The information of input features is mixed

Input Layer Hidden Layers

x1_>

Output Layer



Trade-off

Keep the information of individual features “locally”

Input Layer Hidden Layers

X{ _— -

Output Layer



Trade-off

Keep the information of individual features “locally”

Input Layer Hidden Layers Output Layer

X{ - -

+ —— Y

Interpretability

Users can understand
the contributions of
individual features



Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* Permit complex relationships between individual features (x;) and the

target (g(y))

* Exclude complex interactions between features



Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

e g(): link function
- Identity: g(y) = y —— Regression

- Logistic function: g(y) represents the probability on a class — Classification

L
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Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* f;(-): shape function

- Splines
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Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* f;(-): shape function

- Binary Trees

x <5

yes no
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Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* f;(-): shape function

Binary Trees

x <5 Loo ]
yes no 0737
050 4
025 1
y — 1 x < 7 0.00 4
—0.25
yes no —0.301
—0.75 A
—1.00 4
y=0 y=-1
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Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

. For interpretability, we
* fi(+): shape function control tree complexity

_ (nodes, leaves, depth)
- Binary Trees

x <5 Loo ]
yes no 0737
050 4
y 025 1
y=1 x <7 P00
—0.25
yes no —0.30 7
—0.75 A
—1.00 4
1] 2 4 B 8 10
y=20 y=-1



Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* f;(-): shape function

- Bagged Trees (reduce the variance)
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Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* Training
- Shape functions for individual features

- Learning methods



Learning GAM

* Gradient Boosting

Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1
2

3.
4.

. f] «<0,j=1,--,n Initialize all shape functions as zero
. form=1,---, Mdo Loopover M iterations

forj=1,---,ndo Loopoverall features

N
R « {xij;Yi — zkfk} Calculate residuals
i=1

Learning shape function S: x; — y using R as training data

fj «— f] + S Update the shape function

Learn the one-dimensional
function to predict the residuals
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Learning GAM

* Gradient Boosting

Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1
2

3.
4.

. f] «<0,j=1,--,n Initialize all shape functions as zero
. form=1,---, Mdo Loopover M iterations

forj=1,---,ndo Loop overall features

N
R « {xij;Yi — zkfk} Calculate residuals
i=1

Learning shape function S: x; — y using R as training data

fj «— f] + S Update the shape function

Learn the one-dimensional
function to predict the residuals
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Gradient Boosting

Training data {(x;, v;)}\,

X1 X, X; Xn y
X11 X12 X1j X1n Y1
X21 X22 X2j Xon Y2
XN1 XN?2 XNj XNn YN

16



 Gradient Boosting

Training data {(x;, v;)}\,

[ X1 X, X; Xn y
1 X11 X12 X1j X1n Y1
2 X21 X22 X2j Xon Y2
N XN1 XN?2 XNj XNn YN
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 Gradient Boosting

Training data {(x;, v;)}\,

X1 X, X; Xn y
X11 X12 X1j X1n Y1
X21 X22 X2j Xon Y2
XN1 XN?2 XNj XNn YN
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 Gradient Boosting

Training data {(x;, v;)}\,

Iy .
Residuals
[ X1 X5 Xj Xn y
1 X11 X12 X1j X1n ywo|—" Ekf"
2 X21 X929 T ij e X2n Y2 —> Y2 — kfk
N XN1 XN2 XNj XNn YN —> YN — kfk

(errors made by the
current model)

19



 Gradient Boosting

Update f; based on {(xl-j,yi — Dk fk)}ivzl

X y
- Learn a shape function S that fits: x - y

- Updatefj < f; + S



 Gradient Boosting

Example

O (WUl | = | X

N | oo ]| o

Residuals

8—7=1
5—3=2
8—7=1
7—2=5

x < 4
yes no
y=7 x <6
yes
y=3

no

21



Learning GAM

* Gradient Boosting

Example

OQ|lw|luvl|+~ R
N | oo o[

Residuals

8—7=1
5—3=2
8—7=1
7—2=5

no
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Gradient Boosting

Example

O (WUl | = | X

N | oo ]| o

Residuals

8—7=1
5—3=2
8—7=1
7—2=5

yes

x < 4

yes

nNo

x <6

no
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Gradient Boosting

Example

OQ|lw|luvl|+~ R
N | oo ]| o

Residuals

8—(7+1)=0
5—(3+2)=0
8—(7+1)=0

7—(2+5)=0

Update f; « f; + S

fi S
x<4 x<4
yes no yes no
y=7 x<6 + 1 x<6
Yes no VES no
y=3 y=2 2 5

24



Learning GAM

 Gradient Boosting

Example
X y Residuals
1 8 8—(7+1) =
5 5 5—-(3+2)=
3 8 8—(7+1) =
9 7 7—(2+5)=

o o O O

Update f; « f; + S

fi S
x<4 x<4
yes no yes no
y=17 x<6 + 1 x <6
Yes no VES no
y=3 y=2 2 5

Do we learn a
perfect model?

St .



Learning GAM

The model fits training data too well

Total Error

Varlance We have low bias, but
probably have high variance

Optimum Model Complexily

Error

4 >
Model Complexity

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html
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http://scott.fortmann-roe.com/docs/BiasVariance.html

* Gradient Boosting Update f; « f; +y X S

Example f S
X y Residuals e ) PN
yes no es no
1 38 8—(7+0.1x1)=09 o c + oy x X p
5 5 5 - (3 + 0.1 X 2) = 1.8 ves no yes no
3 8 8—(7+01x1)=09 ;o Sy 2 5 .
9 7 7—(2+01%x5)=45

Add a learning rate to scale the
contribution of the new tree

27



Learning GAM

* Gradient Boosting

Learning tree or tree ensemble shape functions

Algorithm Gradient Boosting for GAM

1
2

3.
4.

. f] «<0,j=1,--,n Initialize all shape functions as zero
. form=1,---, Mdo Loopover M iterations

forj=1,---,ndo Loop overall features

N
R « {xij;Yi — zkfk} Calculate residuals
i=1

Learning shape function S: x; — y using R as training data

fj «— f] + S Update the shape function

Learn the one-dimensional
function to predict the residuals
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Learning GAM
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Learning GAM
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Learning GAM
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Learning GAM

4 )
m=1 . .
m=2| | A\
=M | N AN

\ %
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Question?

33



Learning GAM

e Backfitting

- Learning tree or tree ensemble shape functions

Algorithm Backfitting for GAM

fj «<0,j=1,--,n Initialize all shape functions as zero

Learn f; using the training set {(x;1, y;)}\_4
. forj=2,---,ndo Loop over rest features
j-1 N
R « {xij,yl- — Z fk} Calculate residuals
Learning shape function S: x; — y using R as training data

powo N e

Learn the one-dimensional
function to predict the residuals

6. fj<S  Update the shape function

7. Retrain f; based on the residuals of other n — 1 shape functions
34




* Least Squares

- Learning spline shape functions  g(y) = Byx,% + Bo/x; + -+ By sinx,

- Reducing to fitting a linear model

y =X Objective
Xi = [x1° vz, Sin x| min ||y — XB |l
ith example

ﬁ — [ﬁl’ﬁZ’ "'uBn]T



* Least Squares

- Learning spline shape functions  g(y) = Byx,% + Bo/x; + -+ By sinx,

- Reducing to fitting a linear model

y =X Objective
Xi = [x1° vz, Sin x| min ||y — XB |l
ith example

ﬁ — [ﬁl’ﬁZ’ "'uBn]T

Simple, but not flexible



Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* Training
- Shape functions for individual features: splines, trees, ensembles of trees

- Learning methods: Least Squares, Gradient Boosting, Backfitting



Generalized additive models (GAMs)

g) = fi(xy) + fa(xz) + -+ fr(xy)

* Training
- Shape functions for individual features: splines, trees, ensembles of trees

- Learning methods: Least Squares, Gradient Boosting, Backfitting

* Interpretability

contributions

X1 -f1 (.x1)
x.n =fn (xn)




Application

e Dataset: “Concrete” (Blast Furnace Slag, Fly Ash, Superplasticizer...)

* Task: predicting the compressive strength of concrete

* Models:

Shape Least Gradient .
Function Squares Boosting Backfitting

Splines P-LS/P-IRLS BST-SP BEF-SP

Single Tree N/A BST-TRx BF-TR
Bagged Trees N/A BST-bagTRx | BF-bagTR
Boosted Trees N/A BST-TRx BF-bstTRx

Boosted

Bagged Trees N/A BST-bagTRx | BF-bbTR=x

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.



* GAMs perform better than linear or logistic regression
(without feature shaping)

* Tree-based shaping methods are more accurate

than spline-based methods

16 16

rd Rl BT N
* Bagged-trees with 2-4 leaves as shape functionsin R B =
combination with gradient boosting as learning E&E :
method perform better 0 200 00 0 80 0 200 400 00 800
(a) BST-bagTR2 (b) BST-bag TR 16
* Controlling the complexity of trees can avoid (2 leaves) (16 leaves)

overfitting

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the

18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012. .



Interpretation

Shapes of features for the “Concrete” dataset (versus the compressive strength
of concrete)

(Splines)

(Bagged
trees)

B

of

ol

Blast Furnace Slag

Fly Ash

= by e N

0 =0 100 150 200 3250 300 350 400

Superplasticizer

Coarse Aggregate

o o :f__a——\.\__' __,_F—":.é“—'—_\_____

L t ol oo - o h 1l

N
Y s
I -

o 5 10 15 20 2

B0O B850 @00 Os0 1000 1050 1100 1150

Fine Aggregate

550 =00 EE0 TOO 750 =00 BED OO0 050 1000

Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.
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Question?
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Limitation: GAMs do not consider feature dependency

Model Goal

filx) + f(x2) - oap o f1(xg) + fo(xe) + x9% + -




Limitation: GAMs do not consider feature dependency

Model Goal

filx) + f(x2) - oap o f1(xg) + fo(xe) + x9% + -

Add two-dimensional interactions

GA'M 2 fi(x;) + 2 fi,j (%0 x;)



Definitions

Dataset D = {(x;,¥:)}i-4

X; = [x;1,*, X, ] with n features

y; is the response

x = (xq4,+,x,) denote the features in the dataset
Uy={i}ll<i<n}U,={{i,j}l1<i<j<n},U=U,UU,,ie,U
contains all indices for all features and pairs of features

Forany u € U, let H, denote the Hilbert space of f,,(x,)

H=YycyHy Hy = ZuEUl H, ,H, = ZuEUZ H,,



GA'M F(x) = Sueu fu(xw)

Objective min £ [L(y, F(x))]

L: non-negative convex loss function

regression classification

Squared loss Cross-entropy loss

(y — F(x))? —ylogF(x) — (1 —y)log(1 — F(x))



GA'M

 We have known how to learn shape functions for GAMs

» Applicable to two-dimensional shape functions f,,, u = {i, j}

Splines Trees
fi,2 = X122

0 100 X1 <5
200 80 yes no
400 60

xl Xy <3 X2 <7
600 40
yes/\]o yes no

800 20

0 200 400 600 800 ° y=1 y =2 y=20 y=-1

47



GA'M

Challenge

Z filx;) + Z fii (x:, %)

n features

» 0(n?) features interactions

How to find true
feature interactions?

48



GA'M

2
Algorithm GA M

S0 The set of the selected pairs
Z < U, The set of the remaining pairs
While not converge do

. 1 2
F « arg FEHlTZI:'LILleS HuEE [(y —F (x)) ]

N e

R<y—F(x)

forallu € Z do
F, <« E[R | x,]

u* « arg lglei?%E[(R — fu(x))?]

9. S « Su{u}
10. Z«7Z—{u*}

co N O U

49



GA'M

Learning shape functions for all

2
Algorithm GA M single features (f;(x;)) and the
1. S« 0 The set of the selected pairs selleaiee feature.palrs (i, (xi’ xj))'
N _ When S = @, F is the GAM.
2. Z < U The set of the remaining pairs
3. While not converge do
1 2] The best additive model F so far in Hilbert
F <« ar min —E — F(x

4 gFEH1+ZuESHu2 [(y ( )) ] space Hy + )y es Hy
5. R «y—F(x)
6. forallu € Zdo
7. Fy < E[R | x,]
8. u'eargminzE[(R - f,(x,))?]

uez 2
9. S« Su{u}
10. Z«7Z—{u*}

50



GA'M

2
Algorithm GA M

1. S« 0 The set of the selected pairs
2. Z < U The set of the remaining pairs
3. While not converge do
1 2] The best additive model F so far in Hilbert
F <« ar min —E — F(x
4 gFEH1+ZuesHu2 ’(y ( )) ] space Hy + Xy es Hy

5 R <y —F(x) Calculate residual
6. forallu € Z do

7. F, <« E[R | x,]

8. ' argminZE[(R - fu(x))’]

9. S« Suf{u*}
10. Z«7Z—{u*}

51



GA'M

2
Algorithm GA M

1. S« 0 The set of the selected pairs
2. Z < U, The set of the remaining pairs
3. While not converge do
1 2] The best additive model F so far in Hilbert
F < ar min —E — F(x
4 gFEH1+ZuES Hy 2 ’(y ( )) space Hy + ).,es Hy
5 R<y—F(x) Calculate residual
6 forallu € Z do Loop over all remaining feature pairs
7. E, < E[R | 2] Build an interaction model on the residual
8 * in = — 2
W ars iz ELR — fuxu))"] Learning a shape function

9. S < Suut for each feature pair
10. Z«7Z—{u*}

52



GA'M

2
Algorithm GA M

1. S<0 The set of the selected pairs

2. Z < U The set of the remaining pairs

3. While not converge do

4 F e argFEHlTZiEESHu%E ’(y _ F(x))2 IS:C:e:Itlafdzi:j\E/: Ir_InuodeI F so far in Hilbert
5 R<y—F(x) Calculate residual

6 forallu € Z do Loop over all remaining feature pairs

7. E, < E[R | 2] Build an interaction model on the residual

8

u* < arg mEi?%E[(R — f,(x,))?] Select the best feature pair
u

9. S« Suf{u*}
10. Z«7Z—{u*}
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GA'M

2
Algorithm GA M

1. S<0 The set of the selected pairs

2. Z < U The set of the remaining pairs

3. While not converge do

4 F e argFEHlTZiEESHu%E ’(y _ F(x))2 zgsctée:[tlafdzi:j\el: Ir_InuodeI F so far in Hilbert
5 R<y—F(x) Calculate residual

6 forallu € Z do Loop over all remaining feature pairs

7. E, < E[R | 2] Build an interaction model on the residual

8

u* < arg mEi?%E[(R — f,(x,))?] Select the best feature pair
u

9. S« Su{u} Put the best feature pairin S
10. 7 « 7 —{u*} Remove that from Z

54



GA'M

2
Algorithm GA M

1. S<0 The set of the selected pairs

2. Z < U The set of the remaining pairs

3. While not converge do

4. F « argFEHlTZiEES Hu%E [(y _ F(x))zl Igaect;e:ltlafc;:i\elj Ir{nuodel F so far in Hilbert
5. R<y—F(x) Calculate residual

6. forallu € Z do Loop over all remaining feature pairs —— 0(n2)

7. E, < E[R | 2] Build an interaction model on the residual

8.

. .1 _ 2 '
W ars ey E[(R — f,,(x,))“] Select the best feature pair See 3 fast interaction

9. S« Su{u*}  Putthe best feature pairin S dEtECtiOT algorithm in
10. 7«7 —{u*} Remove that from Z [Lou et al., 2013]
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Select a feature pair

. that minimizes the
.. residual

Z (Remaining pairs)

(xi, ;)

56



Question?
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Application

“Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission”

Caruana et al., KDD 2015

58



In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the
application of machine learning to important problems in healthcare such as predicting
pneumonia risk

Goal: predict the probability of death (POD) for patients with pneumonia

High-risk: patients could be admitted to the hospital

Low-risk: patients were treated as outpatients



In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the
application of machine learning to important problems in healthcare such as predicting
pneumonia risk

Goal: predict the probability of death (POD) for patients with pneumonia

High-risk: patients could be admitted to the hospital

Low-risk: patients were treated as outpatients

Models

Logistic regression
Rule-based learning
k-nearest neighbor
Neural networks



In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the
application of machine learning to important problems in healthcare such as predicting
pneumonia risk

Goal: predict the probability of death (POD) for patients with pneumonia

High-risk: patients could be admitted to the hospital

Low-risk: patients were treated as outpatients

Models

Logistic regression
Rule-based learning

k-nearest neighbor

Neural networks AUC=0.86 (Best performance)




In the mid 90’s, a project was funded by Cost-Effective HealthCare (CEHC) to evaluate the
application of machine learning to important problems in healthcare such as predicting
pneumonia risk

Goal: predict the probability of death (POD) for patients with pneumonia

High-risk: patients could be admitted to the hospital

Low-risk: patients were treated as outpatients

Models

Logistic regression AUC=0.77 (safer to use on patients)
Rule-based learning

k-nearest neighbor

Neuralnetworks AUC=0.86{Bestperformance)



The rule-based model learned a rule: Rule-based models are interpretable
if (chance_of_rain > 0.75)
{ umbrella <- "yes" }

HasAsthama(x) = LowerRisk(x)
else { umbrella <- "no" }

63



Problem

The rule-based model learned a rule:

HasAsthama(x) = LowerRisk(x)

counterintuitive
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Problem

The rule-based model learned a rule:

HasAsthama(x) = LowerRisk(x) counterintuitive

The model captures a true pattern in the training data:

Patients:
asthma + Hospital (ICU)
pneumonia rl/B/ ,f The aggressive care

lowered the risk of
é’ \> R

dying from pneumonia
) S

65



Problem

The rule-based model learned a rule:

HasAsthamabd———towerRiskbd

Asthmatics have much higher risk!

It would be dangerous if the model predicts low
risk on patients who have not been hospitalized

66



How about other potential patterns?

Pregnancy = Lower Risk ?



Problem

How about other potential patterns?

Pregnancy = Lower Risk ?

MUST understand ML models in healthcare.
Otherwise, models may hurt patients
because of true patterns in data!

68



* Better prediction performance than logistic regression
(capture more data patterns)

* Interpretable



Case Study: Pneumonia Risk

 There are 46 features
describing each patient

 Bagged trees with
gradient boosting

Patient-history findings

chronic lung disease - age C
re-admission to hospital - gender -
admitted through ER - diabetes mellitus -
admitted from nursing home | - asthma -
congestive heart failure - cancer -
ischemic heart disease - number of diseases | C
cerebrovascular disease - history of seizures -
chronic liver disease - renal failure -
history of chest pain -

Physical examination findings

diastolic blood pressure C || wheezing -
gastrointestinal bleeding - stridor -
respiration rate heart murmur -
altered mental status - temperature C
heart rate

Laboratory findings

liver function tests - BUN level C
glucose level C || creatinine level C
potassium level C || albumin level C
hematocrit C || WBC count C
percentage bands C || pH C
pO2 C || pCO2 C
sodium level C

Chest X-ray findings

positive chest x-ray
pleural effusion
cavitation/empyema
lobe or lung collapse

lung infiltrate
pneumothorax
chest mass

70



Prediction Performance

AUC for different learning methods

Model Pnenmonia
Logistic Regression 0.8432
GAM 0.8542
GA*M 0.8576
Random Forests 0.8460
LogitBoost 0.8493

AUC: Area Under the ROC Curve

TP Rate

FP Rate

71



Interpretation

1.2

0.8
0.6
04
0.2

0.z
0.4

ol
......

20 30 40 50 60 7O 80 S0 100

age

Older people have
higher risk

1.2

0.8

0.6

0.4

0.2

0.2

04

-0.5

asthma

0.5

1.2

0.8
0.6
0.4
0.2

-0.2
-0.4

a 50 100 150 200 250

BUN level
(Blood Urea Nitrogen)

12

0.a

0.8

04

02

0.2

04

-0.5

cancer

0.5
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Interpretation

1.2 1.2

0.8
0.6
0.4
0.2

0.2
04

200 30 40 50 60 TFO 80 90 10D -1 -0.5 0 0.5 1
age asthma

GAMs also found the
pattern: asthma lowers
the risk

1.2

0.8
0.6
0.4
0.2

-0.2
-0.4

a 50 100 150 200 250

BUN level
(Blood Urea Nitrogen)

12

0.a

0.8

04

02

0.2

04

-0.5

cancer

0.5
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Interpretation

1.2

20 30 40 50 60 7O 80 S0 100

age

1.2

0.8

0.6

0.4

0.2

0.2

04

-0.5 i 0.5 1
asthma

GAMs also found the
pattern: asthma lowers

the risk
l

Repair: eliminate this
term

1.2

0.8
0.6
0.4
0.2

-0.2
-0.4

a 50 100 150 200 250

BUN level
(Blood Urea Nitrogen)

12

0.a

0.8

04

02

0.2

04

-0.5

cancer

0.5
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Interpretation

1.2 1.2

0.8

0.6

0.4

0.2

0.2

04

20 30 40 50 60 7O 80 S0 100 -1

age

-0.5

asthma

0.5

1.2 12
i 1
0. = (1]
08 LT 08
04 1 04
0.2 oz
{ I L .) D
-0. 0.2
-0.4 0.4

(] i 100 150 200 250 -1 -0.5 o 0.5

BUN level cancer

(Blood Urea Nitrogen)

Most patients have BUN=0 because,
as in many medical datasets, if the
variable is not measured or assumed
normal it is coded as 0
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Interpretation

1.2

20 30 40 50 60 7O 80 S0 100

age

1.2 1.2 1.2
1 1 1
0.8 0. (1]
0.8 [1 5] (1]
04 o4 o4
0.2 0.2 oz
o 0 ] 0
0.2 0.2 0.2
-0.4 -0.4 0.4
-0.5 o 0.5 1 (] i 100 150 200 250
asthma BUN level

(Blood Urea Nitrogen)

BUN levels below 30 appear to
be low risk, while levels from
50-200 indicate higher risk
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Interpretation
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Having cancer significantly
increases the risk of dying
from pneumonia
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Interpretation
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Chronic lung disease and a
history of chest pain both lower
risk (similar problem as asthma)
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Interpretation
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Old people with high respiration
rate have the highest risk

- Risk is highest for the youngest patients

- It declines for patients who acquire cancer
later in life

- For patients without cancer, risk rises as
expected with age
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* If a model contains a modest number of terms (e.g., less than 50), it is
best to show terms in the model to experts in the order they are most

familiar with

 When the number of terms grows large, it is best to provide a well-defined
ordering of the terms for a patient (from terms that increase risk most to

terms that decrease risk most)



Question?
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