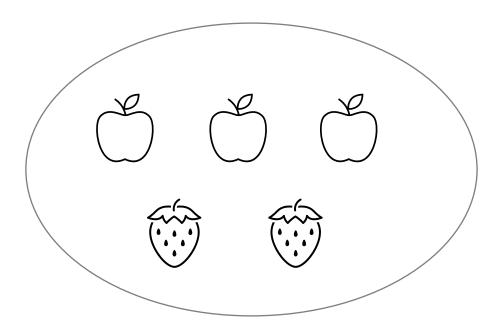


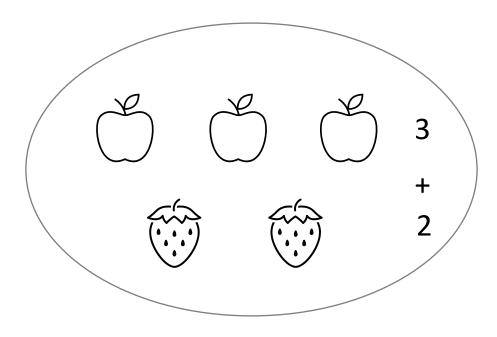
CS 4501/6501 Interpretable Machine Learning

Introduction to Interpretability

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

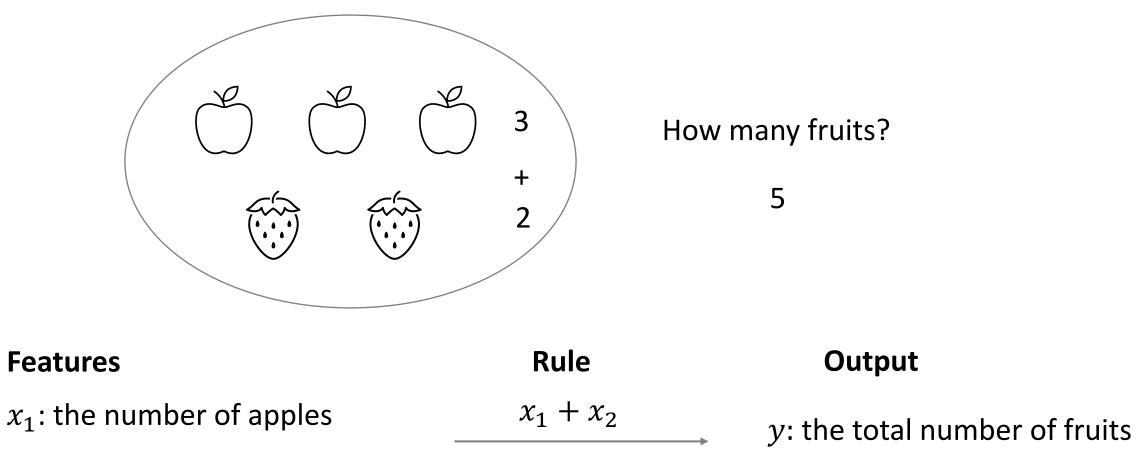


How many fruits?

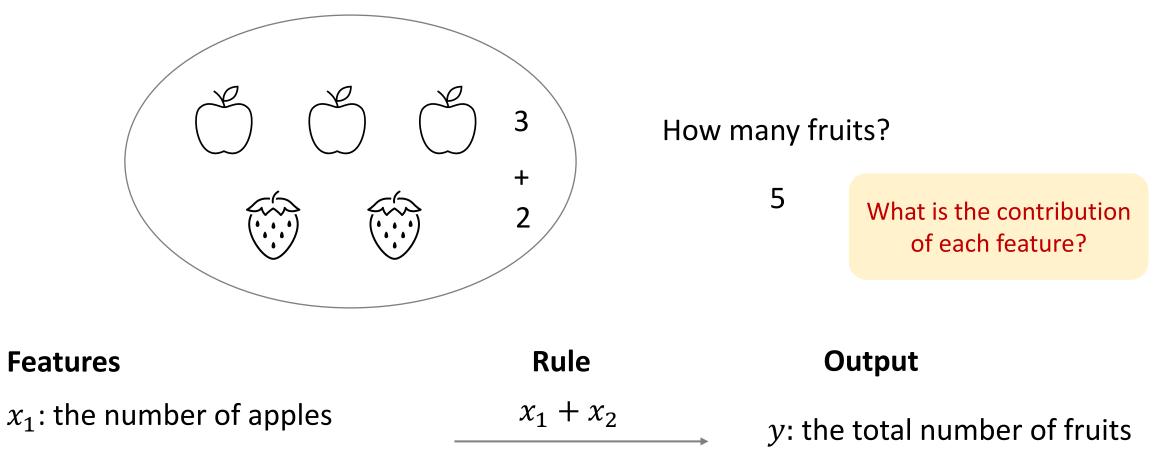


How many fruits?

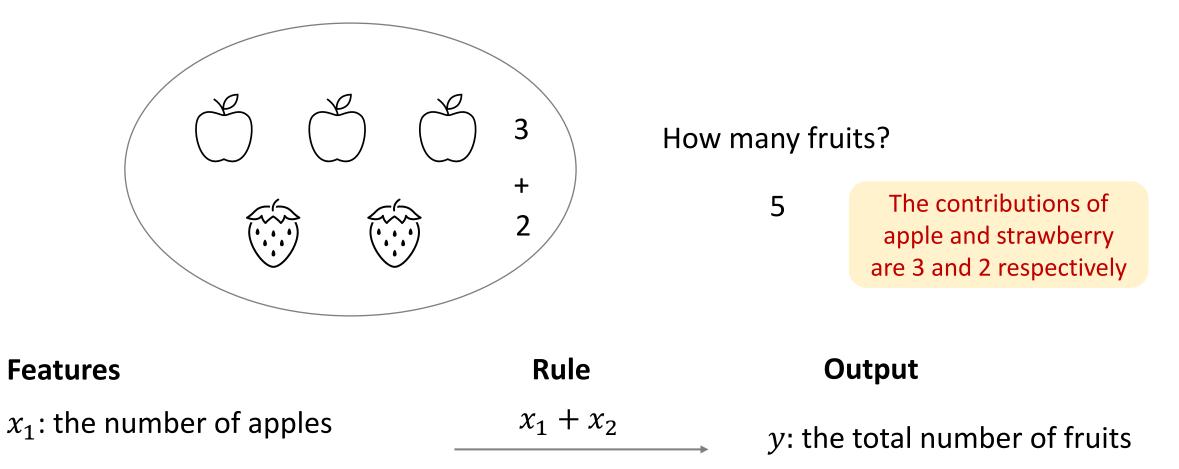
5



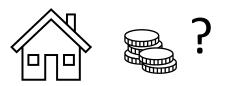
 x_2 : the number of strawberries



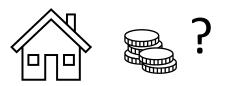
 x_2 : the number of strawberries



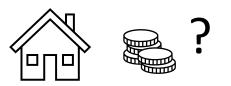
 x_2 : the number of strawberries



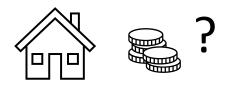
Features	Rule	Output
<i>x</i> ₁ : house size	$0.6x_1 + 0.3x_2 + 0.1x_3$	y: house value
x_2 : location	house size, location, and floor type account for 60%,	y
x_3 : floor type	30%, 10% respectively	

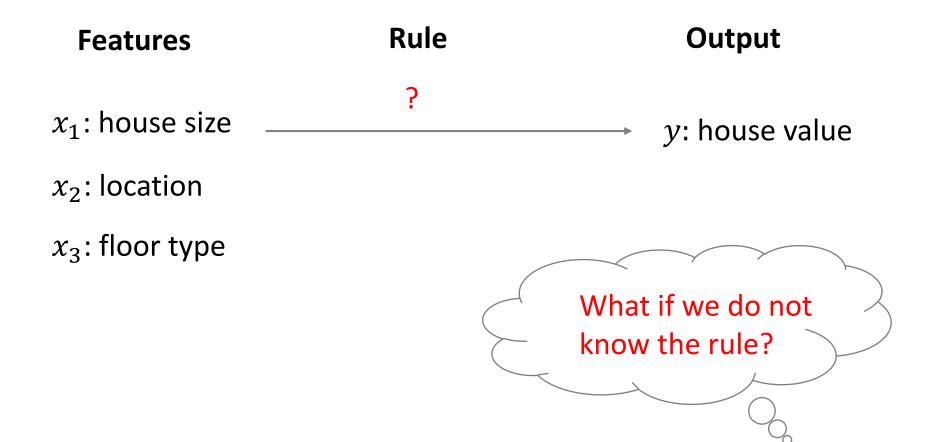


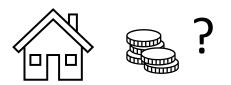
Features	Rule	Output
x_1 : house size	$0.6x_1 + 0.3x_2 + 0.1x_3$	y: house value
x_2 : location	house size, location, and floor type account for 60%,	
x_3 : floor type	30%, 10% respectively	
$x_1 = 100,$ $x_2 = 300,$		<i>y</i> = 170
$x_3 = 200$		



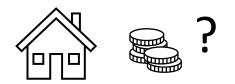
Features	Rule	Output	
x_1 : house size x_2 : location x_3 : floor type	$0.6x_1 + 0.3x_2 + 0.1x_3$ house size, location, and floor type account for 60%, 30%, 10% respectively	y: house value	
$x_1 = 100,$ $x_2 = 300,$ $x_3 = 200$	5070, 1070 respectively	<i>y</i> = 170	Contributions: $x_1: 100 \times 0.6 = 60$ $x_2: 300 \times 0.3 = 90$ $x_3: 200 \times 0.1 = 20$

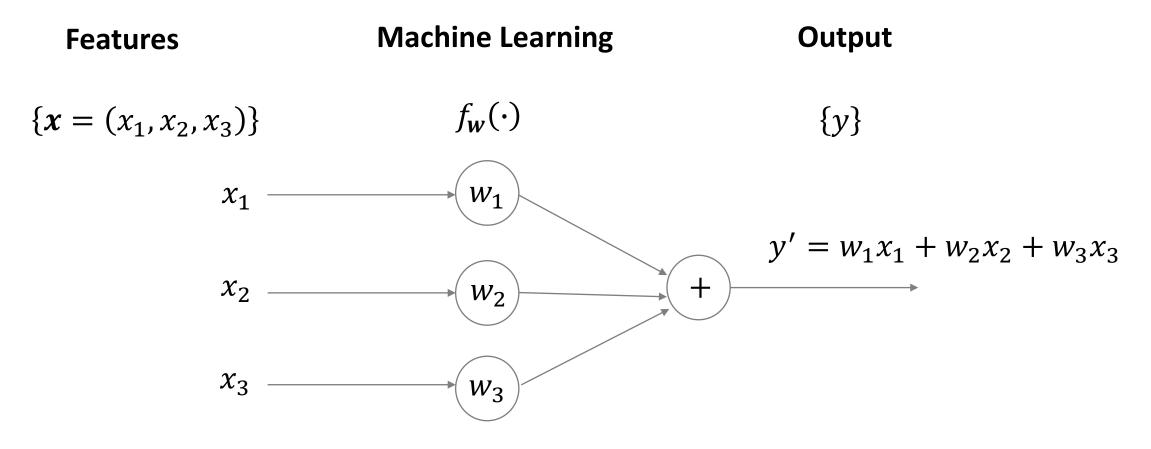


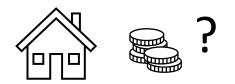


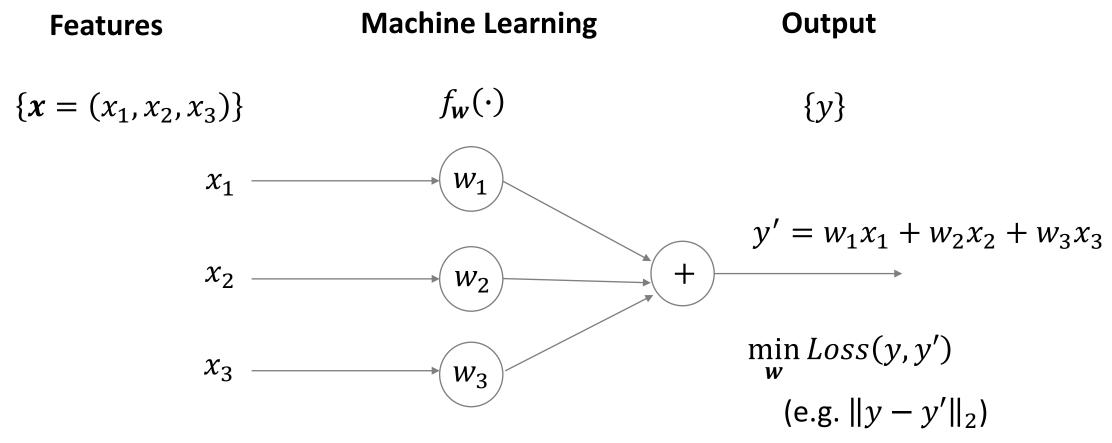


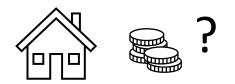
Features	Machine Learning	Output
$\{x = (x_1, x_2, x_3)\}$	$f_{\boldsymbol{w}}(\cdot)$	$\{y\}$

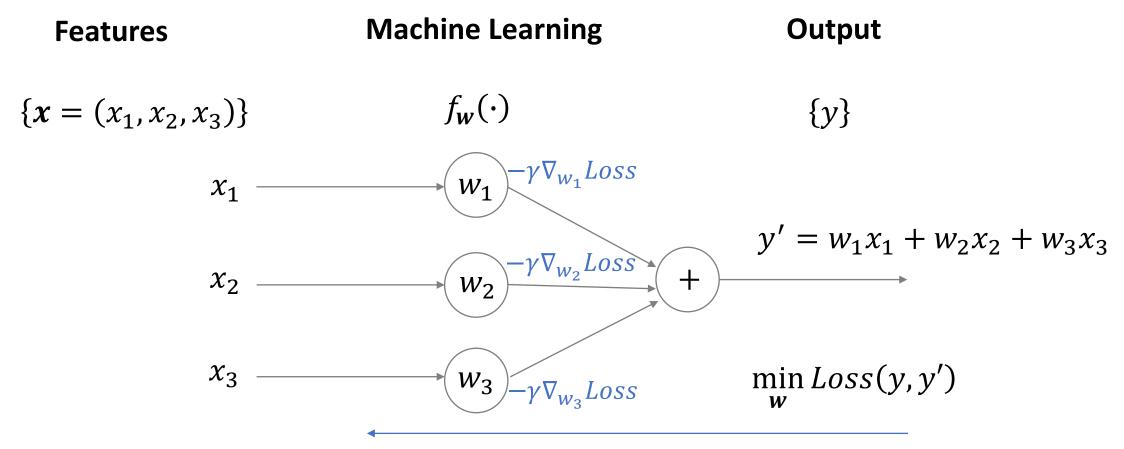






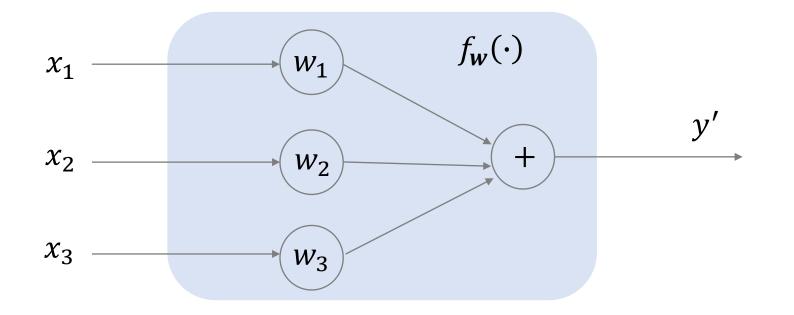




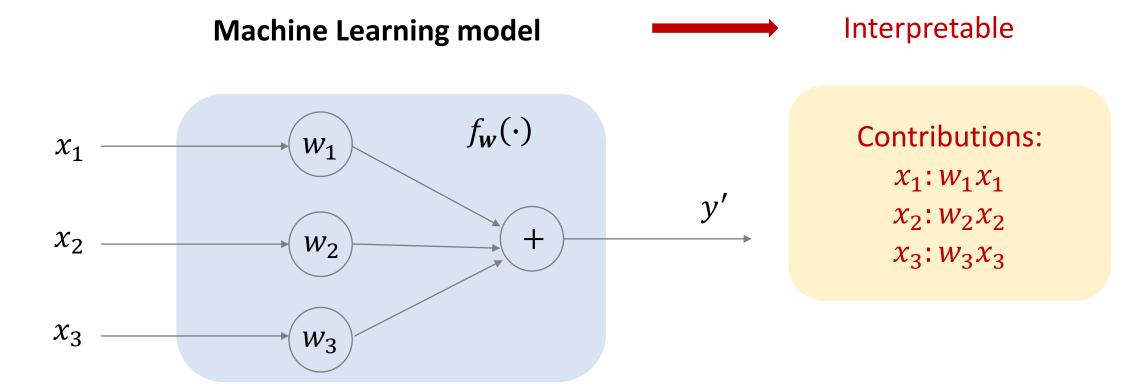


Predict the house value via the learned machine learning model

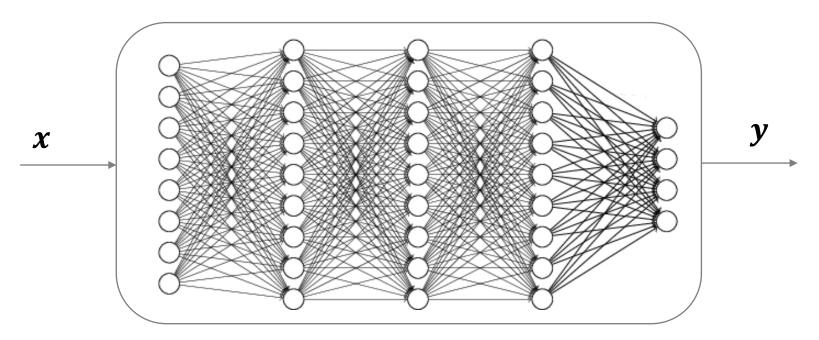
Machine Learning model



Predict the house value via the learned machine learning model



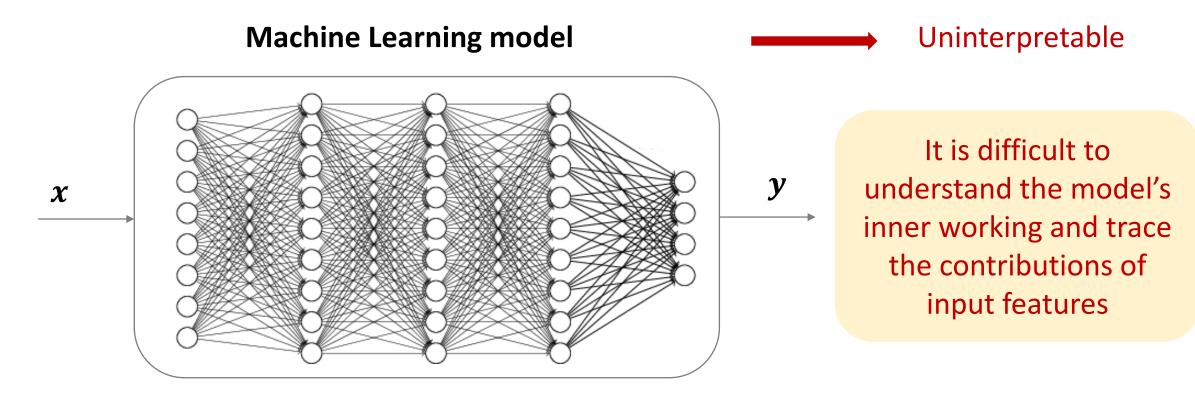
In reality, features and relationships can be more complex



Machine Learning model

(nonlinear and complex transformations)

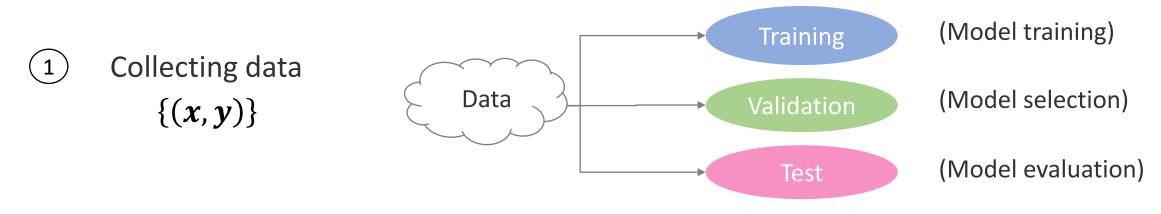
In reality, features and relationships can be more complex



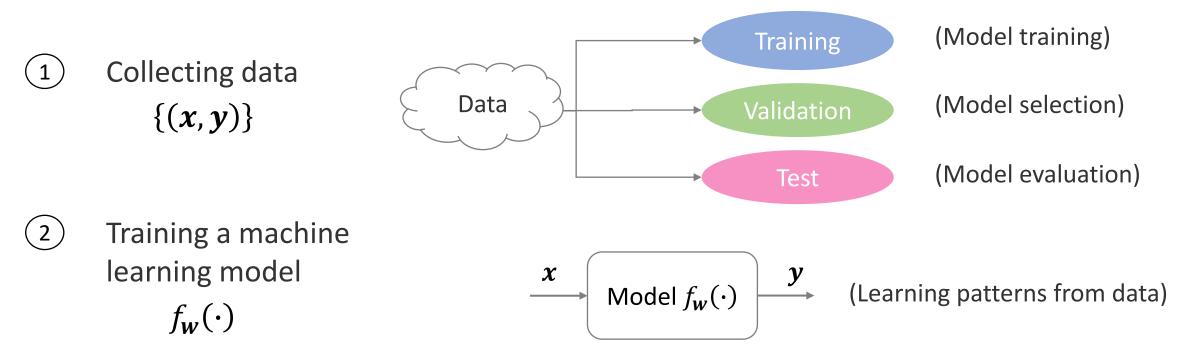
(nonlinear and complex transformations)

Machine learning is a set of methods that computers use to make and improve predictions or behaviors based on data

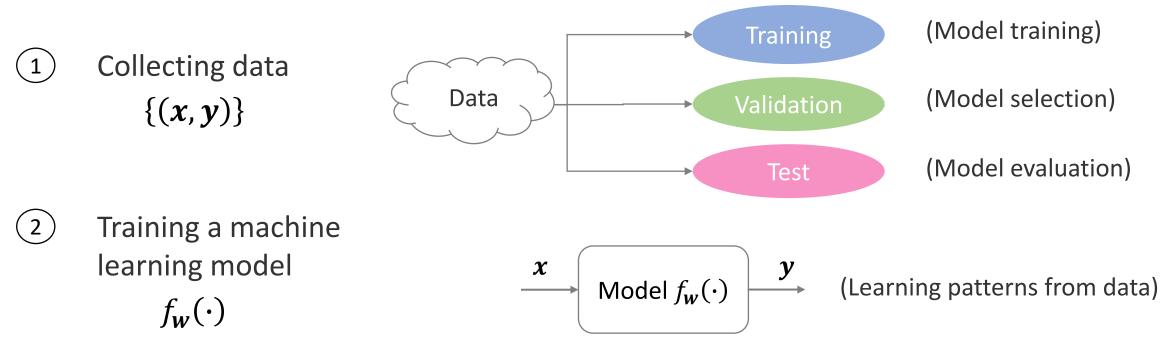
Machine learning is a set of methods that computers use to make and improve predictions or behaviors based on data



Machine learning is a set of methods that computers use to make and improve predictions or behaviors based on data



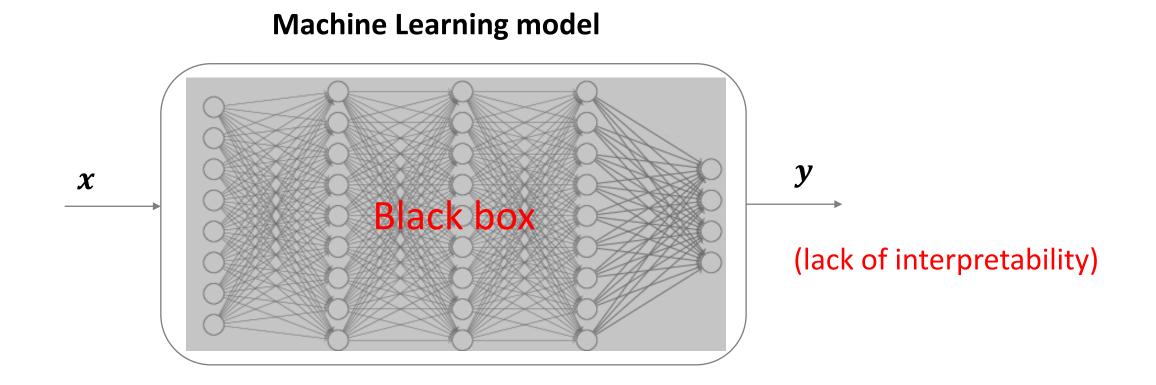
Machine learning is a set of methods that computers use to make and improve predictions or behaviors based on data



3 Testing the model

$$\mathbf{y}' = f_{\mathbf{w}}(\mathbf{x})$$

When data and tasks are complex, machine learning models are becoming bigger and sophisticated



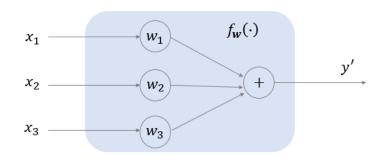
> What is interpretability?

> Why interpretability is important?

There is no standard or mathematical definition of interpretability

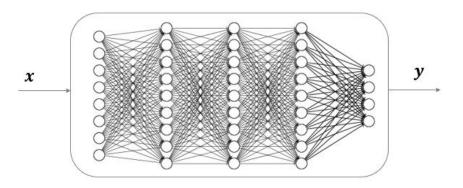
- Interpretability is the degree to which a human can understand the cause of a decision
 [Miller, 2019]
- Interpretability is the degree to which a human can consistently predict the model's result
 [Kim et al., 2016]

A simple model is usually more interpretable than a complex neural network model



- Three parameters (w_1, w_2, w_3)
- $y' = w_1 x_1 + w_2 x_2 + w_3 x_3$
- Contributions:

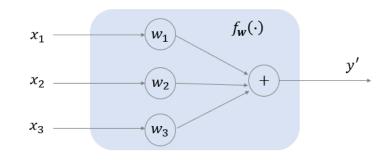
 $x_1: w_1 x_1$ $x_2: w_2 x_2$ $x_3: w_3 x_3$

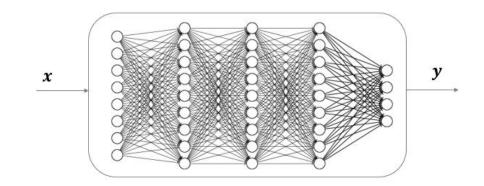


- Millions of parameters
- $y' = f_w(x)$ (complex transformations)
- Model decision-making and feature

attributions are unclear

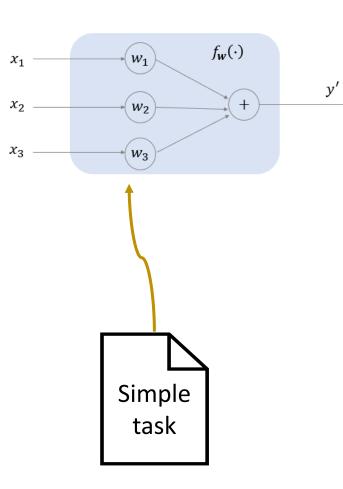
There is a trade-off between model performance and interpretability

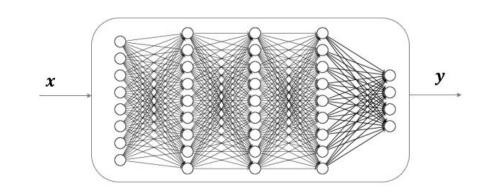




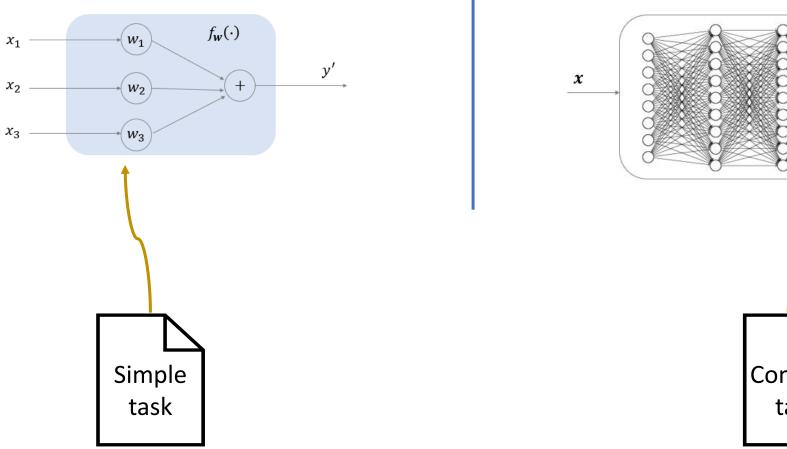
Bad performance Good interpretability

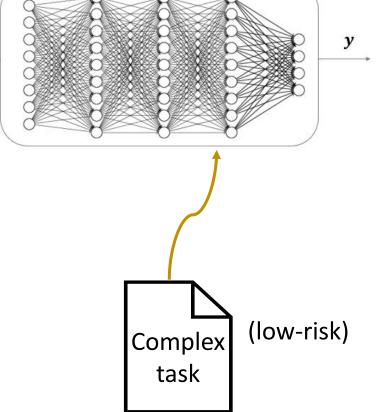
Depending on the specific task...



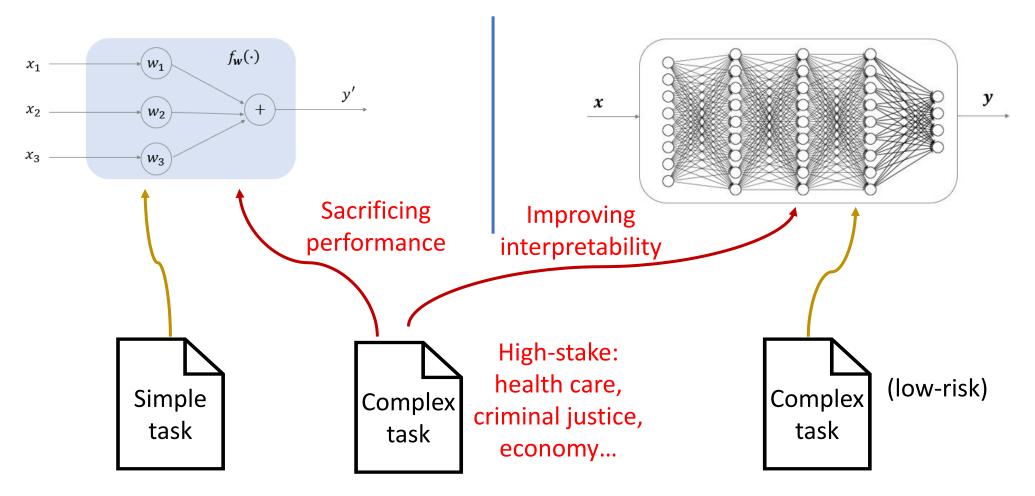


Depending on the specific task...





Depending on the specific task...



Building a machine learning model

- Performance (What the prediction is?)
- Interpretability (Why it came to the prediction?)

- Trust
- Causality
- Transferability
- Informativeness
- Fair and Ethical Decision Making

• Trust

- What is trust?
- Is it simply confidence that a model will perform well?

- Trust
 - What is trust?
 - Is it simply confidence that a model will perform well?
 - Trust can be defined subjectively

For example:

People may trust an ML model if they are comfortable with relinquishing control to it

- Trust
 - What is trust?
 - Is it simply confidence that a model will perform well?
 - Trust can be defined subjectively

For example:

- People may trust an ML model if they are comfortable with relinquishing control to it
 Describe may trust and the series of the serie
- People may not only care about *how often* a model is right, but also *for which examples* it is right
 - If the model tends to make mistakes on only those kinds of inputs where humans also make mistakes
 - If a model tends to make mistakes for inputs that humans classify accurately

- Causality
 - Machine learning models are optimized to make associations
 - They are expected to infer properties of the natural world (e.g., smoking and lung cancer)
 - The associations learned by models may not reflect causal relationships
 - Interpreting ML models can help provide clues about the causal relationships between associated variables

- Transferability
 - Training and test data are randomly sampled from the same distribution
 - A model's generalization error (transferability) is judged by the gap between its performance on training and test data
 - Humans exhibit a far richer capacity to generalize, transferring learned skills to unfamiliar situations

- Transferability
 - Training and test data are randomly sampled from the same distribution
 - A model's generalization error (transferability) is judged by the gap between its performance on training and test data
 - Humans exhibit a far richer capacity to generalize, transferring learned skills to unfamiliar situations
 - Interpretability provides insights on model's transferability

For example:

A model trained to predict probability of death from pneumonia assigns *less risk* to patients if they also had asthma

Reason: The patients with asthma received more aggressive treatment

- Informativeness
 - A model conveys information via its outputs
 - Interpretability can provide additional information to human users

For example:

A diagnosis model might provide intuition to a human decision maker by pointing to similar cases in support of a diagnostic decision

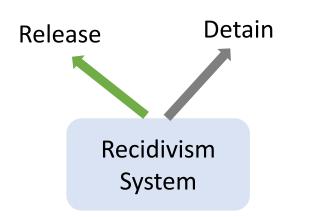
(skin cancer)

• Fair and Ethical Decision Making

Politicians, journalists, and researchers have expressed concern that interpretations must be produced for assessing whether decisions [Lipton, 2018] produced automatically by algorithms conform to ethical standards

• Fair and Ethical Decision Making

Politicians, journalists, and researchers have expressed concern that interpretations must be produced for assessing whether decisions [Lipton, 2018] produced automatically by algorithms conform to ethical standards



- Predictions do not discriminate on race?
- Accuracy or AUC (area under the curve) offer little assurance that ML-based decisions will behave acceptably
- Demands for fairness often lead to demands for interpretable models

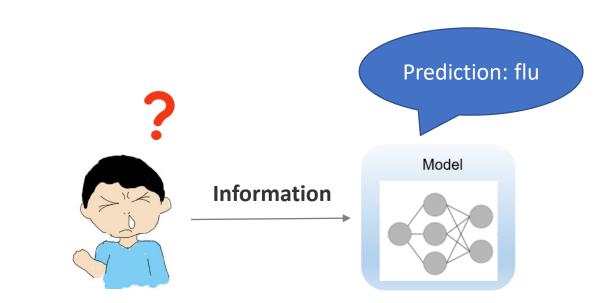
Interpretability

> What is interpretability?

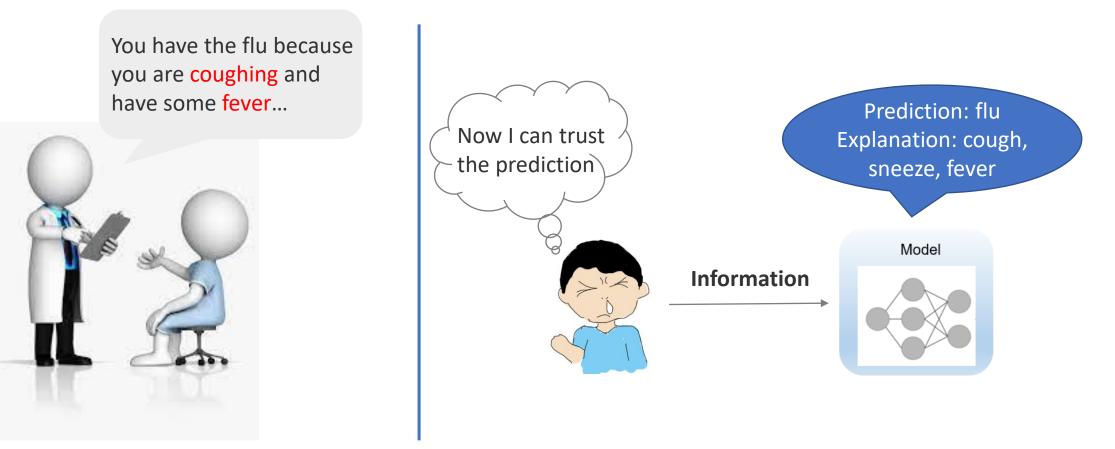
> Why interpretability is important?

The more a machine's decision affects a person's life, the more important it is for the machine to explain its behavior

You have the flu because you are coughing and have some fever...



The more a machine's decision affects a person's life, the more important it is for the machine to explain its behavior



Interpretability reveals the knowledge captured by the model

A recommendation system trained on a large dataset

- It is impossible for human to understand the data
- It is hard to decide whether the model prediction is trustworthy

Interpretability reveals the knowledge captured by the model

You bought some paint

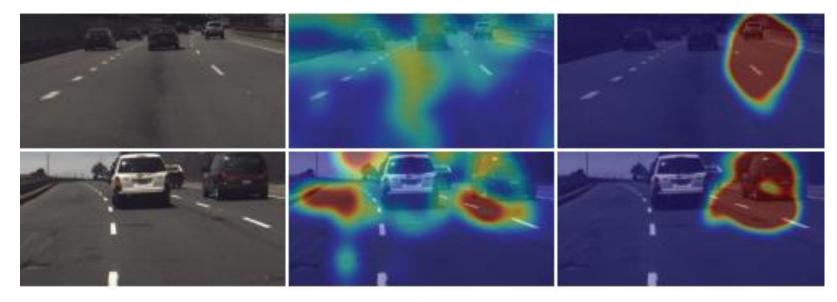
Recommendation: brush and ladder

Interpretation: paint, brush and ladder are frequently bought together

Interpretability for trustworthy AI

• Increasing the trustworthiness of model predictions

Object recognition Interpretation: highlighted pixels

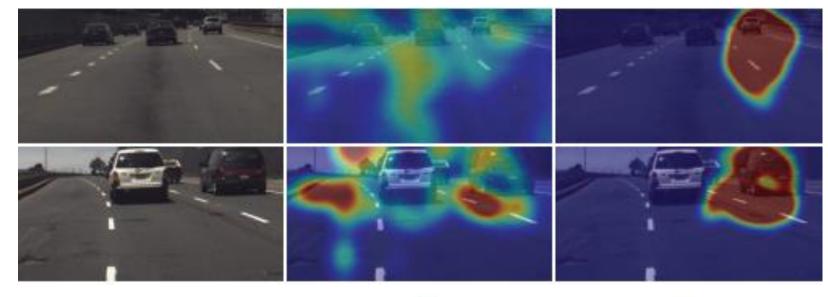


[Kim et al., 2017]

Interpretability for trustworthy AI

• Increasing the trustworthiness of model predictions

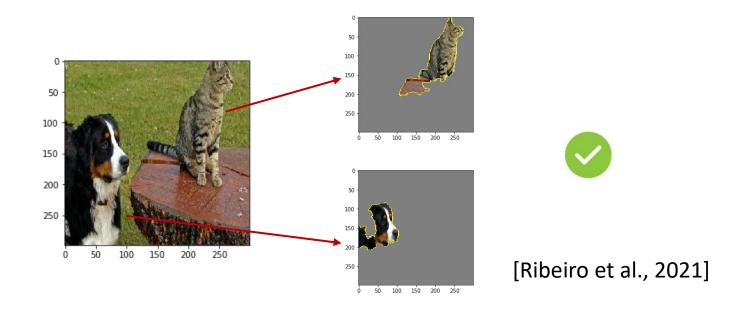
Object recognition Interpretation: highlighted pixels Interpretations tell people whether the model makes correct predictions based on right reasons



Interpretability for trustworthy AI

• Increasing the trustworthiness of model predictions

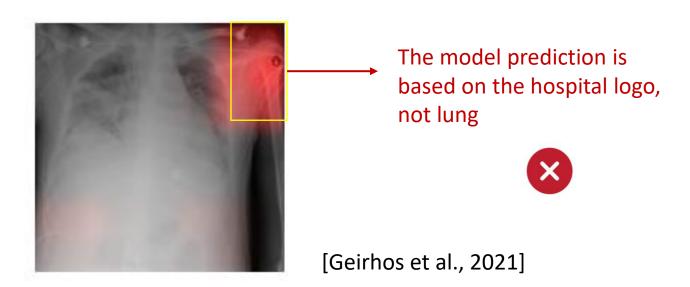
Object recognition Interpretation: highlighted pixels



Interpretability for trustworthy AI

• Increasing the trustworthiness of model predictions

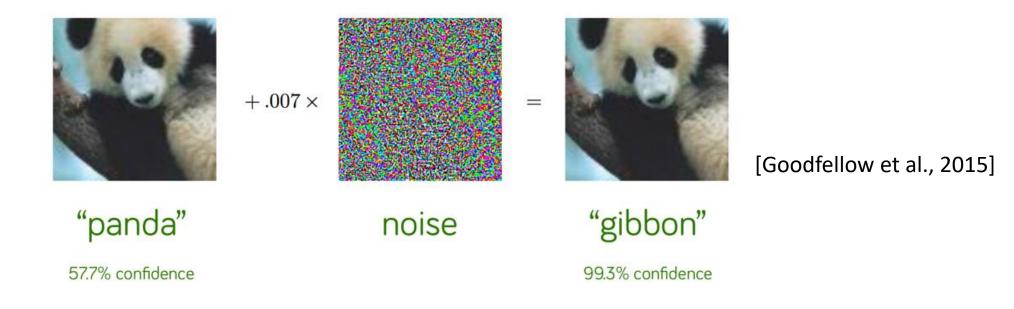
Diagnose pneumonia Interpretation: highlighted pixels



Interpretability for trustworthy AI

• Increasing the reliability of model predictions

Neural network models are vulnerable to adversarial attacks



Interpretability for trustworthy AI

• Increasing the reliability of model predictions

Neural network models are vulnerable to adversarial attacks

Original prediction: Entailment

Confidence: 99%

Premise: A runner wearing purple strives for the finish line

Hypothesis: A runner wants to head for the finish line

Adversarial prediction: Contradiction

Confidence: 98%

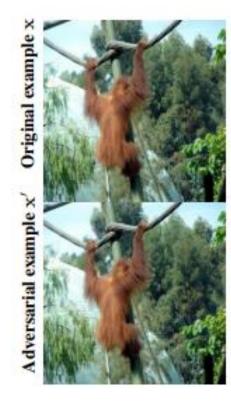
Premise: A runner wearing purple strives for the finish line

Hypothesis: A racer wants to head for the finish line

Interpretability for trustworthy AI

• Increasing the reliability of model predictions

Interpretations for debugging



Prediction: monkey

Interpretation

Prediction: fish

[Boopathy et al., 2020]

Interpretability for trustworthy AI

• Increasing the reliability of model predictions

Interpretations for debugging

Ori	ginal text	Prediction						
an	exceedingly	clever	piece of	cinema	Positive			
Adversarial text								
an	shockingly	proficient	piece o [.]	f cinema	Negative			

Interpretability for trustworthy AI

• Increasing the reliability of model predictions

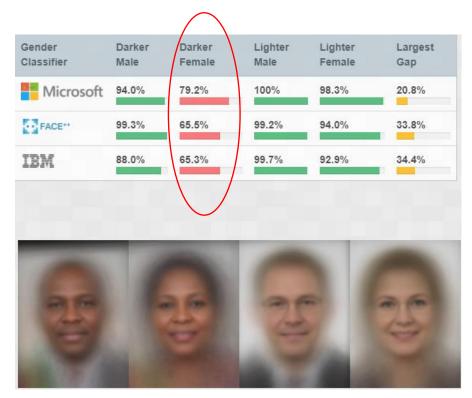
Interpretations for debugging

Original text	Prediction						
an exceedingly clever piece of cinema	Positive						
Adversarial text							
an shockingly proficient piece of cinema	Negative						
Interpretation Pos Neg							
an exceedingly clever piece of cinema							
an shockingly proficient piece of cinema							

Interpretability for trustworthy AI

• Increasing the fairness of model predictions

Machine learning models are making biased decisions

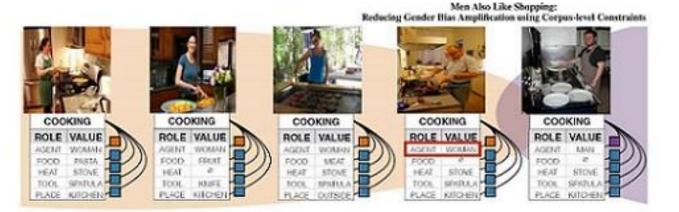


Higher error rate on darker female

Interpretability for trustworthy AI

• Increasing the fairness of model predictions

Machine learning can amplify bias

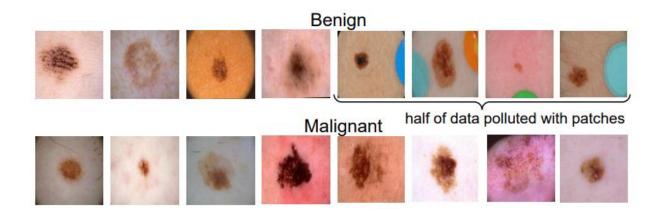


- · Data set: 67% of people cooking are women
- Algorithm predicts: 84% of people cooking are women

Interpretability for trustworthy AI

• Increasing the fairness of model predictions

Detecting and mitigating bias via interpretations

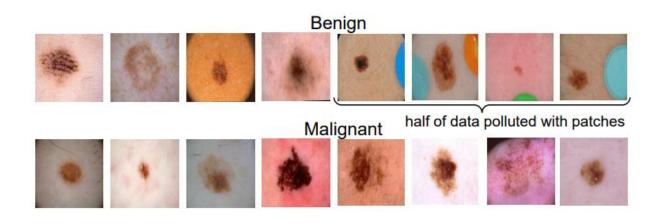


[Rieger et al., 2020]

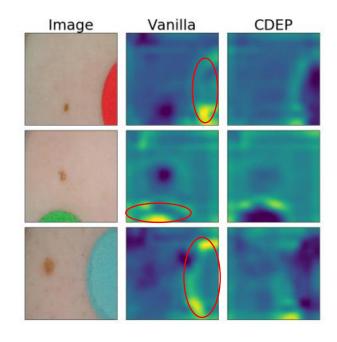
Interpretability for trustworthy AI

• Increasing the fairness of model predictions

Detecting and mitigating bias via interpretations



[Rieger et al., 2020]



Summary

- To solve complex problems, machine learning models are becoming bigger and sophisticated (uninterpretable)
- > Model interpretability is an important criterion beyond performance
- Improving model interpretability
 - Increasing social acceptance
 - Building trustworthy AI (trustworthiness, reliability, fairness)
 - Debugging and developing

Evaluation

• Faithfulness to model

How accurately an interpretation reflects the true reasoning process of the model

• Plausibility to humans

How convincing the interpretation is to humans

Evaluation

• Faithfulness to model

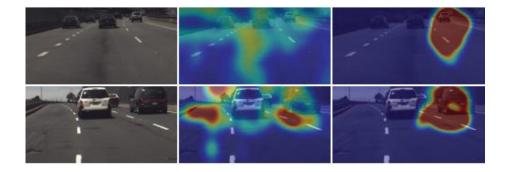
How accurately an interpretation reflects the true reasoning process of the model

• Plausibility to humans

How convincing the interpretation is to humans

- Generally, we cannot satisfy both criteria because of the gap between model reasoning and human understanding
- Faithfulness is the primary criterion

- Post-hoc explanations (Week 4-6)
 - In the inference stage
 - Explaining well-trained models' predictions
 - Inferring model decision making (perturbation, gradients, attention, interaction)

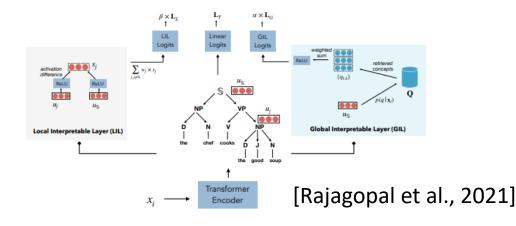


Inte	rpretation	Pos	Neg	
an	exceedingly	clever	piece of	cinema
an	shockingly	proficient	piece o	<mark>f</mark> cinema

- Improving neural network intrinsic interpretability (Week 7)
 - In the training stage
 - Do not change model architecture
 - Manipulating model prediction behavior (to be more interpretable)



- Building interpretable neural network models (Week 9)
 - Model engineering and expert knowledge
 - Designing self-interpretable models



• Rationalized neural networks (Week 10)



- Interpretation and human understanding (Week 11)
 - Interpretation can help human understanding?
 - Interpretation may fool human decision?
 - How humans and models interact via interpretations?

- Robust interpretations (Week 12)
 - Robustness of interpretations to input perturbations
 - Robustness of interpretations to model manipulations
 - Risks of interpretation vulnerability

Top-1000 Intersection: 58.8%

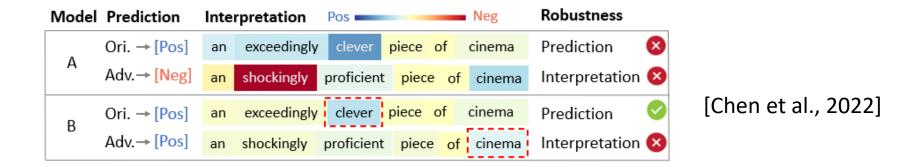
Kendall's Correlation: 0.6736

Top-1000 Intersection: 0.1% Kendall's Correlation: 0.2607

Top-1000 Intersection: 60.1% Kendall's Correlation: 0.6951

[Chen et al., 2019]

Connections with model performance, robustness, fairness (Week 13)



Reference

- Christoph Molnar, Interpretable Machine Learning, 2021
- Murdoch, W. James, et al. "Definitions, methods, and applications in interpretable machine learning." *Proceedings* of the National Academy of Sciences 116.44 (2019): 22071-22080.
- Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." *Artificial intelligence* 267 (2019): 1-38.
- Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! criticism for interpretability." *Advances in neural information processing systems* 29 (2016).
- Kim, Jinkyu, and John Canny. "Interpretable learning for self-driving cars by visualizing causal attention." *Proceedings of the IEEE international conference on computer vision*. 2017.
- Geirhos, Robert, et al. "Shortcut learning in deep neural networks." *Nature Machine Intelligence* 2.11 (2020): 665-673.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016.
- Boopathy, Akhilan, et al. "Proper network interpretability helps adversarial robustness in classification." *International Conference on Machine Learning*. PMLR, 2020.
- Rieger, Laura, et al. "Interpretations are useful: penalizing explanations to align neural networks with prior knowledge." *International Conference on Machine Learning*. PMLR, 2020.

Reference

- Du, Mengnan, et al. "Learning credible deep neural networks with rationale regularization." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.
- Rajagopal, Dheeraj, et al. "SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers." *arXiv preprint arXiv:2103.12279* (2021).
- Jain, Sarthak, et al. "Learning to faithfully rationalize by construction." *arXiv preprint arXiv:2005.00115* (2020).
- Hase, Peter, and Mohit Bansal. "Evaluating explainable AI: Which algorithmic explanations help users predict model behavior?." *arXiv preprint arXiv:2005.01831* (2020).
- Chen, Jiefeng, et al. "Robust attribution regularization." *arXiv preprint arXiv:1905.09957* (2019).
- Chen, Hanjie, and Ji, Yangfeng. "Adversarial Training for Improving Model Robustness? Look at Both Prediction and Interpretation." The 36th AAAI Conference on Artificial Intelligence (2022).
- Lipton, Zachary C. "The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery." *Queue* 16.3 (2018): 31-57.
- Jacovi, Alon, and Yoav Goldberg. "Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness?." *arXiv preprint arXiv:2004.03685* (2020).