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Risks of black-box models

Unexpected failures
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Risks of black-box models =+ Improving model interpretability =+ Building better models

Unexpected failures Post-hoc explanations
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Towards Interpreting and Mitigating Shortcut
Learning Behavior of NLU Models

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande,
Franck Dernoncourt, Jiuxiang Gu, Tong Sun, Xia Hu

(NAACL, 2021)



Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Training set

P/d'

rediction: cow



Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Spurious correlation

Training set
COW <> grass

Object or background?

rediction: cow



Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Spurious correlation

Training set
COW <> grass

Out-of-domain (OOD) Test

rediction: cow




Shortcuts

Shortcuts are decision rules that perform well on standard benchmarks but
fail to transfer to more challenging testing conditions

high‘ / ﬁ

training BHoP 0.0.d.
set test set test set

I

[R. Geirhos, et al., 2020]
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Shortcuts

Shortcuts are decision rules that perform well on standard benchmarks but

fail to transfer to more challenging testing conditions
[R. Geirhos, et al., 2020]

training set
with labels A or B nnnn
A A A A B B B B

Categorisation by (typical) human Categorisation by Neural Network

Decision rules:

* byshape @

* by counting the number
of white pixels (moons
are smaller than stars) ©

* by location €

i.i.d. test set

0.0.d. test set
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Shortcut features: high-frequency words associated with labels (lexical bias)

Example

“Coffee” is a

Y ; positive word
| love coffee

/ % 000
“I like coffee” \
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Shortcuts

Shortcut features: high-frequency words associated with labels (lexical bias)

Example

“Coffee” is a

ositive word
'Pos| “I love coffee” g

SN

T
o
O

'Pos| “I like coffee” —

0.0.D Test

'Pos| “l love movie”

Negative

TN
v 2%
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Local mutual information (LMI) [Schuster et al., 2019]

p(ylo) LMI + Head Functional words: stop
LMI(w,y) = p(w,y) log( - ) - words, negation words,
punctuation, numbers, etc.
count(w,y)
__ count(y)
p(y) = D] Informative words
_ count(w,y) /
p(y ‘ ’UJ) ~ count(w)

. . . Long-tailed distribution
|D| is the number of occurrences of words in training set
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Question?
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Long-Tailed Phenomenon

Preference for features of high local mutual information (LMI)

e Dataset statistics LMIt Head  kuncional words: stop

= words, negation words,
punctuation, numbers, etc.

Informative words

Long-tailed distribution

e Model Behavior

Post-hoc explanation method: IG
x; —* Feature attributions: g(x;)

| love coffee
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Long-Tailed Phenomenon

Preference for features of high local mutual information (LMI)

* Comparing Model and Dataset

Model interpretation Dataset statistics

LMI { Head Functional words: stop

= words, negation words,
punctuation, numbers, etc.

Informative words
S0 k

Long-tailed distribution

Xj | love coffee

Shortcut degree u; = 1
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Long-Tailed Phenomenon

Preference for features of high local mutual information (LMI)

* Comparing Model and Dataset

Model interpretation Dataset statistics

LMI { Head Functional words: stop

= words, negation words,
punctuation, numbers, etc.

Informative words
S%

Long-tailed distribution

X | love coffee

Shortcut degree u; = 0
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Long-Tailed Phenomenon

Preference for features of high local mutual information (LMI)

* Shortcuts features are learned first IS Functonal words:stop
L punctt'lation, numbers,letc.
epoch=1 epoch=2 epoch=K
. @ / /_' Informative words
—————— > Bl an /
@ \
Long-tailed distribution
f1() f2() fx () | - .
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Preference for features of high local mutual information (LMI)

e Shortcuts features are learned first

epoch=1 epoch=2

f() f2()

If f1(x;) # fx(x;), x; is a hard example

If f1(x;) = fx(x;), x; may contain
shortcut features

epoch=K

LMI { Head Functional words: stop

words, negation words,
punctuation, numbers, etc.

Informative words

/

-tailed distribution
fK (.) Long-tai

Shortcut degree v; = 0

Shortcut degree v; = cos (g(f1 (x), g(fK(xl-)))
cos(+,*): cosine similarity
g(f1(x)): 1G explanation vector
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Long-Tailed Phenomenon

Preference for features of high local mutual information (LMI)

* Shortcut degree measurement

b; = norm(u; + v;) b; € [0,1]

N

Data statistics Learning dynamics

20
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LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features



LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features

Smoothing Softmax

Biased teacher model fr Logit value  Softmax value
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LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features

Smoothing Softmax

Biased teacher model fr Logit value  Softmax value

Xi 4[Teacher model ]— z] o(z/) = IU(ZiT)l, "';O-(Z;T)K]

\ Smooth the original probability

o(z)} ™"

- Ifb; =0,s; = G(ZL-T)
- If b; = 1, s; has the same value on K labels

. . . S: S ,...’S. S=
- Keep model from giving over-confident predictions = [sia (k] L

for samples with large shortcut degree K

II§=1 J(Zi
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LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features

Self knowledge distillation

Utilize the smoothed probability output s; from the teacher model to train a student model fs

. g

same architecture

Unbiased student model fs

S
Xj — Student model — U(Zi)

Tt TTTTTTTTTTT T T Lioss = (1 —a)L (yi» O-(Zig)) +al (Si' O-(Zig))



LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features

Overconfident prediction

...........

—
-

-----------

.| Teacher Softmax __| Smoothed
' _model ) Softmax l

Input x Distill loss

Student Softrmax
model

Student loss

Ground truthy —1

A
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LTGR (Long-Tailed distribution Guided Regularizer)

* Force the model to down-weight its reliance on shortcut features

* Encourage the model to shift its attention to more task-relevant features

Overconfident prediction

___________

discarded

‘w T __| Smoothed
hh | Softmax l

Input x Distill loss

Softmax 4‘

Student loss
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Datasets

 FEVER [Thorneetal., 2018]

n u

Task: infer the relationship of a claim and an evidence as “refute”, “support” or
“not enough information”

Adversarial sets: Symmetric vl and v2 (Sym1 and Sym 2, Schuster et al., 2019),
where a shortcut word appears in both support and refute label ——  Test model generalizability



Datasets

 FEVER [Thorneetal., 2018]

n u

Task: infer the relationship of a claim and an evidence as “refute”, “support” or
“not enough information”

Adversarial sets: Symmetric vl and v2 (Sym1 and Sym 2, Schuster et al., 2019),
where a shortcut word appears in both support and refute label ——  Test model generalizability
e MNLI [Williamsetal., 2018]

Task: infer the relationship of a premise and a hypothesis as “entailment”,
“contradiction” or “neutral”

Adversarial sets: HANS (McCoy et al., 2019) and MNLI hard set (Gururangan et al., 2018)



Datasets

e MNLI-backdoor

Randomly select out 10% of the training samples with the entailment label
and append the double quotation mark “ to the beginning of the hypothesis

Adversarial sets: MNLI hard set (Gururangan et al., 2018), append the hypothesis of all
samples with



Models

e BERT + bidirectional LSTM

e DistilBERT + bidirectional LSTM



Shortcut Behavior Analysis

 Models pay the highest attention to shortcut features

* Models only pay attention to one branch of the inputs

[CLS] no not near as much as i ' d like to i mean i' ve i tend to stay pretty busy at my job and uh [SEP] lfimy job wasn 't so

neutral

(1.00) busy , 1 do that a lot more . [SEP]

entailment as R . X . o _

(0.67) [CLS] equivalent to increasing national saving to 19 . [SEP] national savings are [§inow . [SEP]
Sentence 2

Sentence 1
contradiction [CLS] this factual record provided an important context for consideration of the legal question of the meaning of the

(1.00) presence requirement . [SEP] the record gave B@context regarding the legal question . [SEP]
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Shortcut Behavior Analysis

e Preference for head of distribution

The ratio of the training samples with the largest integrated gradient words located in the

5% head of the long-tailed distributions

LMI

MNLI BERT-base FEVER BERT-base
#Words Topl Top2 Top3 Topl Top2 Top3
Ratio  253% 513% 66.0% 10.8% 269% 31.44%

Head Functional words: stop

words, negation words,

/

Informative words

Long-tailed distribution

punctuation, numbers, etc.
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Shortcut Behavior Analysis

* Preference for one branch of input

The word with the largest integrated gradient value usually lies in one branch of input
(e.g., “hypothesis” branch of MNLI)

MNLI BERT-base FEVER BERT-base
Subset Entail Contradiction Neural Support Refute Not_enough
Ratio 75.8% 04.6% 06.3% 99.4% 99.9% 83.8%

“hypothesis” branch “claim” branch
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Shortcut Behavior Analysis

* Preference for one branch of input

The word with the largest integrated gradient value usually lies in one branch of input
(e.g., “hypothesis” branch of MNLI)

Data artifacts: some common
strategy and use a limited

A dictionary of words for

Ratio 75.8% 04.6% 06.3% 99.4% 99.9% 83.8% annotation (e.g., negation
words for contradiction)

MNLI BERT-base FEVER BERT-base

Subset Entail Contradiction Neural Support Refute Not_enough

“hypothesis” branch “claim” branch
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Mitigation Performance Analysis

* Models that rely on shortcut features have decent performance for in-distribution
data, but generalize poorly on other OOD data

BERT base DistilBERT

Models FEVER {Syml Sym2| FEVER | Syml Sym2 !
Original 85.10 15401 6240 8557 : 5495 6235 |
Reweighting 8432 15637 64.89: 8476 | 56.28 63.97 !
Product-of-expert ~ 82.35 {58.09 64.27! 8510 | 56.82 64.17 |
Order-changes 81.20 :5536 64.29:. 82.86 5532 63.95
LTGR 85.46 157.88 65.03! 86.19 5649 64.33 !
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Mitigation Performance Analysis

Models that rely on shortcut features have decent performance for in-distribution
data, but generalize poorly on other OOD data

LTGR does not sacrifice in-distribution test accuracy, while improves the OOD

generalization accuracy

BERT base DistilBERT
Models FEVER Syml Sym2 FEVER Syml Sym2
Original 85.10 5401 6240 8557 5495 6235
Reweighting 8432 5637 6489 8476 56.28 63.97
Product-of-expert  82.35 58.09 64.27 85.10 56.82 64.17
Order-changes 81.20 5536 6429 8286 55.32 63.95
LTGR 8546 57.88 65.03 86.19 5649 64.33
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Adversarial Training for Improving Model Robustness?
Look at Both Prediction and Interpretation

Hanjie Chen, Yangfeng Ji

(AAAI, 2022)



Vulnerability to Adversarial Attacks

Legitimate Sample

% Stop Sign |

Correct prediction

Adversarial Perturbation Adversarial Sample

7 Yield Sign

/ Neural network \
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Adversarial Examples

* Inputs formed by applying small but intentionally worst-case perturbations to
examples from the dataset [Goodfellow et al., 2015]

e Similar to original examples

* Fool the model to output wrong predictions

+.007 x

“oanda” noise “gibbon”

577% confidence 99.3% confidence
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Adversarial Examples in NLP

Neural language models are vulnerable to adversarial attacks

* Natural language inference

Original prediction: Entailment

Premise: A runner wearing purple strives for the finish line

Hypothesis: A runner wants to head for the finish line

Adversarial prediction: Contradiction

Premise: A runner wearing purple strives for the finish line

Hypothesis: A racer wants to head for the finish line

44



Adversarial Examples in NLP

Question answering

Paragraph: The largest portion of the Huguenots to settle in the Cape arrived between 1688
and 1689...but quite a few arrived as late as 1700; thereafter, the numbers declined.

Question: The number of new Huguenot colonists declined after what year?

Original prediction: 1700

45



Adversarial Examples in NLP

Question answering

Paragraph: The largest portion of the Huguenots to settle in the Cape arrived between 1688
and 1689...but quite a few arrived as late as 1700; thereafter, the numbers declined. The

number of old Acadian colonists declined after the year of 1675.

Question: The number of new Huguenot colonists declined after what year?

Original prediction: 1700

Prediction under adversary: 1675

46



Adversarial Examples in NLP

 Sentiment classification

Original text: This interesting mouvie...

Adversarial text: This interesting movia...

Original prediction: positive

Prediction under adversary: negative

47



Adversarial Examples in NLP

Sentence-level

(adding additional sentences, paraphrasing)

Word-level

v Maintain the original semantic meaning

ituting synonym ing/removin in r
('substituting synonyms , adding/removing/swapping words) and lexical and grammatical correctness

Character-level

(typos)

Malicious triggers

(input-agnostic sequences of tokens)

48



Adversarial Training

@ Collecting adversarial examples

Perturbations
Original l Target
examples model

(2)  Fine-tuning the model

o _ Fine-tune
Original Adversarial

examples examples

Adversarial
Successful attack Q examples

Failed attack (X ]

Target v Improve robustness
model

49



Adversarial Training

Training objective: making the model produce the same and correct predictions on
original/adversarial examples

Model prediction behaviors are consisten
on original/adversarial example pairs?

50



* We utilize IG and LIME to analyze model prediction behavior

* Consistent model interpretations on original/adversarial examples
indicate robust predictions

Prediction Interpretation
Ori. > [Pos] an exceedingly clever piece of cinema

Adv.— [Pos]  an shockingly = proficient piece of cinema



Problem

Traditional adversarial training ignores the consistency between model
decision-makings on original/adversarial example pairs

Model Prediction Interpretation Pos s m— Neg

Robustness

A

Ori. = [Pos] an exceedingly piece of cinema
Adv.— [Neg| an BSOS proficient piece of cinema

Prediction 6
Interpretation Q

Ori. — [Pos] an exceedingly: clever :piece of cinema
1 1

Adv.— [Pos] an shockingly proficient piece of | cinema

Prediction

Interpretation Q

52



Problem

Correct predictions cannot guarantee model robustness

Model Prediction Interpretation Pos = = Neg Robustness
. Prediction &
Interpretation Q
B Prediction Q
Adv.— [Pos]  an shockingly pesky piece of ! cinema| Interpretation °

Attack B

53



Motivation

Robust model

* Consistent prediction behaviors on original/adversarial example pairs

* Making the same predictions (what) based on the same reasons (how) (consistent interpretations)

Model Prediction Interpretation Pos me= = Neg Robustness

Ori. = [Pos] an exceedingly clever piece of cinema Prediction

Adv.— [Pos]  an shockingly = proficient piece of cinema Interpretation

Ori. =~ [Neg| an exceedingly piece of cinema Prediction
Adv.— [Neg| an shockingly piece of cinema Interpretation

C
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Feature-level adversarial training (FLAT)

Teach the model to make the same and correct predictions on an original/adversarial

example pair based on the corresponding important words

Ori.

a fantastic movie

4

Adv.

a marvelous movie
7

positive
positive

56



Two desiderata for FLAT

* Global feature importance scores ¢:
teach the model to recognize the replaced words in an original example and their substitutions
in the adversarial counterpart as the same important (or unimportant) for predictions

Vocab Importance

X1
le

P,
[cbxz] ¢x; € (0,1)



Two desiderata for FLAT

* Global feature importance scores ¢:
teach the model to recognize the replaced words in an original example and their substitutions
in the adversarial counterpart as the same important (or unimportant) for predictions

Vocab Importance

X1
le

P,
[cbxz] ¢x; € (0,1)

* Feature selection function g ()

guide the model to make predictions based on the corresponding important words in the
original and adversarial example respectively

x — geolx)



Feature-level adversarial training (FLAT)

Objective

Iglen Lpred + VLimp

Ori.

Lpred

a fantastic movie [

= IE(x,y)~D lL (fe (g¢(x )) ,}’)] + ]E(x',y)~1)’ lL (f9 (g‘/’(x, )) 'y)] / :m: positive
Ad positive

Limp = IE(x,x’)~DUD' [ Z |¢xi — d)xi’l] a marvelous mowey

i, xj#zx;'

L(+,*): cross entropy loss
L(+,*): cross entropy loss
Xx: original example

x': adversarial example .



Feature-level adversarial training (FLAT)

Objective
Igien Lprea + VLimp
Ori.
Lpred ’ a fantastic movie
= IE(x,y)va lL (fe (g¢(x )) ,)’)] + ]E(x',y)~7.)’ [L (fB (g¢(x )) 'y)] V
Adv.
Limp = IE(x,x’)~DUD' [ z |¢xi — d)xi/l] a marvelous movieyg
[ xiixi’

How to learn ¢ ?

L(+,*): cross entropy loss

L(+,"): cross entropy loss How to select words via g (+)?

x: original example Cb)

x': adversarial example o

positive
positive



Feature-level adversarial training (FLAT)

Learning with variational word masks (VMASK)

Training stage

Vocab Masks
X Model
xv1 ____________ " (val
m
I g_ X1 Z, Lo xvz ******** i (vaz
love % X, é z, 21— Prediction y :
this =3 L z 3
I. U?J X3 ; 3 m va ““““““ > (vaN
movie Q X4 Z, |
3
- : l ¢»,: global word importance
. Wxi~Bern0ulli(¢xl.)
z=gep(x)=WOx W, €{01} © z; = Wy, - x;, Wy, €{0,1}

* Mask out irrelevant or noisy words
* Forward important words to the model

Hanjie Chen and Yangfeng Ji. “Learning variational word masks to improve the interpretability of neural text

classifiers.” EMNLP, 2020 61



Feature-level adversarial training (FLAT)

Learning with variational word masks (VMASK)

Training stage

Vocab Masks
X Model .
E E Xo, [ g (val
m 1 :
| g_ X1 : Zy | xvz ************ > (vaz
@ < — | Prediction y
love S X5 : E Z) .;<‘; : :
this =3 X : z N
: @ > : = > m E Koy |- > (»bva
movie ) Xq| | Z, T
< 1 1
® ! : :
= @4 B Information bottleneck
I Update l
maxI[(Z;Y) — B -1(Z; X)
Inference network ¢ 2 z

l lower bound

max E(xy)~p|Eq[log pOyIW, 2)] + B - Hy(W])]

Hanjie Chen and Yangfeng Ji. “Learning variational word masks to improve the interpretability of neural text
classifiers.” EMNLP, 2020 62



Objective

Iglen Lyreda ¥ VLimp

Lprea = E(xy)-p|Eq[LUfa(WOX), )] = B - H{WIX)| + E(yr )p [Eqr [Lfo(W'OX), )] = B - Hy(W'|x)]

Limp = ]E(x,x')~DUD’ [ Z |¢xi _ ¢xi’|]

i, xiixi’

L(:,+): cross entropy loss, H, (- | -): conditional entropy

q = qp(W|x) and q" = q',(W’|x") denote the distributions of word
masks on the original example x and adversarial example x’ respectively



Objective

Iglen Lyreda ¥ VLimp

Lprea = E(xy)-p|Eq[LUfa(WOX), )] = B - H{WIX)| + E(yr )p [Eqr [Lfo(W'OX), )] = B - Hy(W'|x)]

Limp = ]E(x,x')~DUD’ [ z |¢xi _ ¢xi’|] .
i, X! Connection
FLAT degrades to traditional adversarial

trainingwhen W =1andy =0
L(:,+): cross entropy loss, H, (- | -): conditional entropy

q = qp(W|x) and q" = q',(W’|x") denote the distributions of word
masks on the original example x and adversarial example x’ respectively

64



Feature-level adversarial training (FLAT)

Decision boundary

movie ——
—— fantastic
Prediction
Positive Negative
Model
Mask T T
OMETN o Mol o [N
Ori. o Adv. ©
a fantastic movie a marvelous movie
0.9 0.50.40.3
Global imp. [ |
fantastic movie a marvelous

(a)

Decision boundary

«—  marvelous
~—— fantastic

Prediction
Positive Positive

T ;

Model-FLAT

Mask T
B 1 ICH O 1 |ICN
Ori. © Adv. ©

a fantastic movie a marvelous movie

0.9 0.50.4
Global imp. [ I
fantastic/ movie a
marvelous

(b) | .



Models

* Recurrent neural network [Hochreiter and Schmidhuber 1997, LSTM]
* Convolutional neural network [Kim 2014, CNN]

e BERT [Devlin et al., 2019]

* DeBERTa [He et al., 2021]

Datasets

 |MDB [Maas et al., 2011]

* SST-2 [Socher et al., 2013]

* AG News (AG) [Zhang et al.,2015]
 TREC [Li and Roth, 2002]

Attacks
(TextAttack benchmark [Morris et al. 2020])

* Textfooler [Jin et al. 2020]
e PWWS [Ren et al. 2019]



Experiments

Prediction accuracy (%) on standard test sets

Models SST2 IMDB AG TREC

LSTM-base 84.40 8803 91.08 90.80 “-base”: the base model trained on the clean data
tﬁﬁ-adv(g&mglm) 83..:2 88.1‘_9] 90.29 87.60 “-adv”: the model trained via traditional adversarial training
STM-adv( ) 82.59 88.37 91.16 89.60 9 . : .

LSTM-FLAT (Textfooler) 8479 89.17 91.00 91.00 -FLAT”: the model trained via FLAT

LSTM-FLAT (PWWS) 83.69 88.52 91.37 91.20

CNN-base 84.18 88.63 91.32 91.20

CNN-adv(Textfooler) 82.15 88.81 90.99 89.20

CNN-adv(PWWS) 83.42 88.89 91.30 90.00 : .

CNN-FLAT (Textfooler) 83.00 88.80 91.64 89.20 v’ Adversarial training (“adv” and “FLAT”) does not
CNN-FLAT (PWWS) 6531 8899 3103 #9.20 hurt model performance on clean data, and even
BERT-base 91.32 91.71 93.59 97.40 - g -

BERT-adv(Textfooler) 91.38 92.50 90.30 96.00 IMpProves DFEdICtIOH accuracy in Some cases
BERT-adv(PWWS) 90.88 93.14 93.38 95.20

BERT-FLAT (Textfooler) 91.54 9278 94.07 96.20

BERT-FLAT (PWWS) 91.05 93.11 93.09 96.60

DeBERTa-base 94.18 93.80 93.62 96.40

DeBERTa-adv(Textfooler) 0440 92.86 92.84 95.60

DeBERTa-adv(PWWS) 9478 94.17 92.96 96.40

DeBERTa-FLAT (Textfooler) 94.29 94.29 94.29 96.40
DeBERTa-FLAT (PWWS) 04.12 9426 93.82 96.40
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Experiments

Prediction robustness

After-attack accuracy (AA): model prediction accuracy on adversarial examples

30 |
. - v’ Adversarial training improves model
X 20 | prediction robustness
:EE - v" FLAT consistently outperforms traditional
10 adversarial training
0

CNN LSTM BERT DeBERTa

(Textfooler, SST2)
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Experiments

Ori. — [Pos] an exceedingly clever piece of cinema

Interpretation Consistency
Adv.— [Pos|] an shockingly proficient piece of cinema

* Post-hoc interpretations: IG, LIME
* Kendall’s Tau order rank correlation (KT): overall rankings of word attributions between different interpretations
* Top-k intersection (Tl): the proportion of intersection of top k important features identified by different interpretations

[Chen et al. 2019; Ghorbani et al. 2019, Boopathy et al. 2020]

0.8 |
0.6
| 0.6 e FLAT
04 _ -
o ~0.4
0.2 0.2 |
0 0l
CNN LSTM BERT DeBERTa CNN LSTM BERT DeBERTa

(Textfooler, SST2)
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Experiments

. . Ori. — [Pos] an exceedingly clever piece of cinema
Interpretatlon Con5|stency

Adv.— [Pos|] an shockingly proficient piece of cinema
* Post-hoc interpretations: IG, LIME

» Kendall’s Tau order rank correlation (KT): overall rankings of word attributions between different interpretations
 Top-k intersection (Tl): the proportion of intersection of top k important features identified by different interpretations

[Chen et al. 2019; Ghorbani et al. 2019, Boopathy et al. 2020]

0.8 | BN Base
0.6 e Adv
_ 0.6 mmmm FLAT
04 _ -
= =0.4 | v’ Traditional adversarial training
' cannot guarantee model
0.2 0.2 robustness regarding
- - interpretation discrepancy
0] 0] v" FLAT consistently improves
CNN LSTM BERT DeBERTa CNN LSTM BERT DeBERTa

model interpretation

consistency
(Textfooler, SST2)
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Experiments

Visualization of interpretations

Both LSTM-FLAT and CNN-FLAT correctly predict the original/adversarial example pairs
with consistent interpretations

Models  Original Examples Adversarial Examples POS
LSTM-base [Pos] jacquot 's tosca is a RuGEIM [Neg] jacquot 's tosca is a | cure Io,4

LSTM-adv [Pos] jacquot 's tosca is a treat [Pos] jacquot 's tosca is a cure ' 5

LSTM-FLAT [Pos] jacquot 's tosca is a m [Pos] jacquot 's tosca is a |- 0

CNN-base [Neg] a very m sign  [Pos] a very m sign 02
owvats (i o ey [ s vod » e EEEIREN |,

CNN-FLAT [Neg] a very m sign [Neg] a very wicked sign

Neg
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Experiments

Transferability of model robustness

Test with six unforeseen adversarial attacks: PWWS [Ren et al. 2019], Gene [Alzantot et al. 2018], IGA
[Wang et al. 2019], PSO [Zang et al. 2020], Clare [Li et al. 2021], and BAE [Garg and Ramakrishnan 2020]

Models PWWS Gene IGA PSO Clare BAE
LSTM-base 11.64 20.26 9.83 5.88 3.02 36.52
LSTM-adv 15.38 25.65 17.02 560 390 36.35
LSTM-FLAT 20.48 33.44 24.22 6.53 5.55 39.87
CNN-base 829 2032 7.85 560 1.48 37.12 v' The models trained via FLAT show
CNN-adv 868 1642 626 560 104 3548 better robustness than base“ne
CNN-FLAT 42.56 55.02 46.35 10.38 17.57 48.38 )
models across different attacks
BERT-base 11.70 3224 972 6.26 0.86 35.31
BERT-adv 13.01 3449 1087 6.64 1.04 36.74
BERT-FLAT 15.93 35.31 1593 9.50 5.29 37.56

DeBERTa-base 14.17 37.12 12.19 6.75 0.55 38.61
DeBERTa-adv 17.52 37.18 1285 7.96 1.07 40.14
DeBERTa-FLAT 21.80 48.16 28.17 13.01 1.37 44.54
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Question?
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