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Interpretations for improving model performance, 
robustness, fairness
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Risks of black-box models

Unexpected failures

Bias and unfairness

Vulnerability

…
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Risks of black-box models Improving model interpretability

Unexpected failures

Bias and unfairness

Vulnerability

…

Post-hoc explanations

Improving intrinsic interpretability

Building self-interpretable models

Rationalized Neural Networks

Building better models

Trustworthiness

Fairness

Robustness

Performance

…

…
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Towards Interpreting and Mitigating Shortcut 
Learning Behavior of NLU Models

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, 
Franck Dernoncourt, Jiuxiang Gu, Tong Sun, Xia Hu

(NAACL, 2021)
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Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Training set

…
Test

Prediction: cow 
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Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Training set

…
Test

Spurious correlation
cow ↔ grass

Object or background?

Prediction: cow 
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Shortcuts

Neural networks make correct predictions based on wrong reasons

Failures under different circumstances

Training set

…
Test

Prediction: cow 

Spurious correlation
cow ↔ grass

Out-of-domain (OOD) Test

×
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Shortcuts

Shortcuts are decision rules that perform well on standard benchmarks but 
fail to transfer to more challenging testing conditions

[R. Geirhos, et al., 2020]
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Shortcuts

Shortcuts are decision rules that perform well on standard benchmarks but 
fail to transfer to more challenging testing conditions

[R. Geirhos, et al., 2020]

Decision rules:
• by shape
• by counting the number 

of white pixels (moons 
are smaller than stars)

• by location



11

Shortcuts
Shortcut features: high-frequency words associated with labels (lexical bias)

Example

[Pos] “I love coffee”
[Pos] “I like coffee”

“Coffee” is a 
positive word
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Shortcuts
Shortcut features: high-frequency words associated with labels (lexical bias)

Example

[Pos] “I love coffee”
[Pos] “I like coffee”

“Coffee” is a 
positive word

[Pos] “I love movie”

I do not know 
“love” is positive

O.O.D Test

Negative
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Shortcuts
Local mutual information (LMI) [Schuster et al., 2019]

is the number of occurrences of words in training set

LMI

Long-tailed distribution

Head Functional words: stop 
words, negation words, 
punctuation, numbers, etc.

Informative words
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Question?
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Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Dataset statistics

• Model Behavior

Post-hoc explanation method: IG

"! Feature attributions: # "!
I love coffee
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Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Comparing Model and Dataset

I love coffee

Model interpretation Dataset statistics

5%

Shortcut degree $! = 1"!
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Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Comparing Model and Dataset

I love coffee

Model interpretation Dataset statistics

5%

Shortcut degree $! = 0"!
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Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Shortcuts features are learned first

epoch=1 epoch=2 epoch=K

(" ) (# ) ($ )



19

Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Shortcuts features are learned first

epoch=1 epoch=2 epoch=K

(" ) (# ) ($ )

If (" "! ≠ ($ "! , "! is a hard example Shortcut degree +! = 0

If (" "! = ($ "! , "! may contain 
shortcut features

Shortcut degree +! = ,-. # (" "! , # ($ "!
,-. ),) : cosine similarity
# (" "! : IG explanation vector
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Long-Tailed Phenomenon
Preference for features of high local mutual information (LMI)

• Shortcut degree measurement

0! = 1-23($! + +!)

Data statistics Learning dynamics

0! ∈ 0, 1
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Question?
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features

Smoothing Softmax

Biased teacher model (%

Teacher model"!

Logit value Softmax value

8!% 9 8!% = 9 8!% ", ⋯ , 9 8!% $

Smooth the original probability

.! = .!,", ⋯ , .!,$ .!,' =
9 8!% '

"()!

∑*+"$ 9 8!% *
"()!
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features

Smoothing Softmax

Biased teacher model (%

Teacher model"!

Logit value Softmax value

8!% 9 8!% = 9 8!% ", ⋯ , 9 8!% $

Smooth the original probability

.! = .!,", ⋯ , .!,$ .!,' =
9 8!% '

"()!

∑*+"$ 9 8!% *
"()!

- If 0! = 0, .! = 9 8!%
- If 0! = 1, .! has the same value on < labels
- Keep model from giving over-confident predictions 

for samples with large shortcut degree
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features

Self knowledge distillation

Utilize the smoothed probability output .! from the teacher model to train a student model (,

Unbiased student model (,

Student model"! 9 8!,

ℒ-.// = 1 − ? ℒ @!, 9 8!, + ?ℒ .!, 9 8!,

same architecture
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features

fixed
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Mitigation
LTGR (Long-Tailed distribution Guided Regularizer)

• Force the model to down-weight its reliance on shortcut features 

• Encourage the model to shift its attention to more task-relevant features

updated

discarded
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Question?
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Experiments
Datasets

• FEVER [Thorne et al., 2018]

Task: infer the relationship of a claim and an evidence as “refute”, “support” or 
“not enough information”

Adversarial sets: Symmetric v1 and v2 (Sym1 and Sym 2, Schuster et al., 2019), 
where a shortcut word appears in both support and refute label Test model generalizability
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Experiments
Datasets

• FEVER [Thorne et al., 2018]

Task: infer the relationship of a claim and an evidence as “refute”, “support” or 
“not enough information”

Adversarial sets: Symmetric v1 and v2 (Sym1 and Sym 2, Schuster et al., 2019), 
where a shortcut word appears in both support and refute label Test model generalizability

• MNLI [Williams et al., 2018]

Task: infer the relationship of a premise and a hypothesis as “entailment”, 
“contradiction” or “neutral”

Adversarial sets: HANS (McCoy et al., 2019) and MNLI hard set (Gururangan et al., 2018)



31

Experiments
Datasets

• MNLI-backdoor

Randomly select out 10% of the training samples with the entailment label 
and append the double quotation mark “ to the beginning of the hypothesis

Adversarial sets: MNLI hard set (Gururangan et al., 2018), append the hypothesis of all 
samples with “
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Experiments
Models

• BERT + bidirectional LSTM

• DistilBERT + bidirectional LSTM
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Shortcut Behavior Analysis

• Models pay the highest attention to shortcut features 

• Models only pay attention to one branch of the inputs

Sentence 1 Sentence 2
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Shortcut Behavior Analysis
• Preference for head of distribution

The ratio of the training samples with the largest integrated gradient words located in the 
5% head of the long-tailed distributions
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Shortcut Behavior Analysis
• Preference for one branch of input

The word with the largest integrated gradient value usually lies in one branch of input 
(e.g., “hypothesis” branch of MNLI)

“hypothesis” branch “claim” branch
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Shortcut Behavior Analysis
• Preference for one branch of input

The word with the largest integrated gradient value usually lies in one branch of input 
(e.g., “hypothesis” branch of MNLI)

“hypothesis” branch “claim” branch

Data artifacts: some common 
strategy and use a limited 
dictionary of words for 
annotation (e.g., negation 
words for contradiction)
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Mitigation Performance Analysis
• Models that rely on shortcut features have decent performance for in-distribution 

data, but generalize poorly on other OOD data
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Mitigation Performance Analysis
• Models that rely on shortcut features have decent performance for in-distribution 

data, but generalize poorly on other OOD data
• LTGR does not sacrifice in-distribution test accuracy, while improves the OOD 

generalization accuracy
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Question?
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Adversarial Training for Improving Model Robustness? 
Look at Both Prediction and Interpretation

Hanjie Chen, Yangfeng Ji

(AAAI, 2022)
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Vulnerability to Adversarial Attacks

Neural network 

Correct prediction Wrong prediction
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Adversarial Examples

• Inputs formed by applying small but intentionally worst-case perturbations to 
examples from the dataset [Goodfellow et al., 2015]

• Similar to original examples

• Fool the model to output wrong predictions
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Adversarial Examples in NLP
Neural language models are vulnerable to adversarial attacks

Original prediction: Entailment

Premise: A runner wearing purple strives for the finish line

Hypothesis: A runner wants to head for the finish line

Adversarial prediction: Contradiction

Premise: A runner wearing purple strives for the finish line

Hypothesis: A racer wants to head for the finish line

• Natural language inference
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Adversarial Examples in NLP

Paragraph: The largest portion of the Huguenots to settle in the Cape arrived between 1688 
and 1689…but quite a few arrived as late as 1700; thereafter, the numbers declined. 

Question: The number of new Huguenot colonists declined after what year?

Original prediction: 1700

• Question answering
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Adversarial Examples in NLP

Paragraph: The largest portion of the Huguenots to settle in the Cape arrived between 1688 
and 1689…but quite a few arrived as late as 1700; thereafter, the numbers declined. The 
number of old Acadian colonists declined after the year of 1675.

Question: The number of new Huguenot colonists declined after what year?

Original prediction: 1700

Prediction under adversary: 1675

• Question answering
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Adversarial Examples in NLP

• Sentiment classification

Original text: This interesting movie…

Adversarial text: This interesting movia…

Original prediction: positive

Prediction under adversary: negative
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Adversarial Examples in NLP
• Sentence-level

(adding additional sentences, paraphrasing)

• Word-level

( substituting synonyms , adding/removing/swapping words)

• Character-level

(typos)

• Malicious triggers

(input-agnostic sequences of tokens)

• …

ü Maintain the original semantic meaning 
and lexical and grammatical correctness
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Adversarial Training

1 Collecting adversarial examples

Target 
model

Original 
examples

Perturbations

Successful attack

Failed attack

Adversarial 
examples

Fine-tuning the model

Target 
model

Original 
examples

Adversarial 
examples+

Fine-tune

2

ü Improve robustness 
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Adversarial Training

Training objective: making the model produce the same and correct predictions on 
original/adversarial examples

Model prediction behaviors are consistent 
on original/adversarial example pairs?
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Model Interpretation

• We utilize IG and LIME to analyze model prediction behavior

• Consistent model interpretations on original/adversarial examples 
indicate robust predictions

[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema

Prediction Interpretation
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Problem

Traditional adversarial training ignores the consistency between model 
decision-makings on original/adversarial example pairs

Model Prediction Interpretation Robustness

A

B

[Pos]Ori.
[Neg]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema

Prediction

Interpretation

[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema

Prediction

Interpretation

Pos Neg
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Correct predictions cannot guarantee model robustness

Model Prediction Interpretation Robustness

B
[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema

Prediction

Interpretation

Pos Neg

B
[Neg]Ori.
[Pos]Adv.

an exceedingly dull piece of cinema

an shockingly pesky piece of cinema

Prediction

Interpretation

Attack B

Problem
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Motivation
Robust model
• Consistent prediction behaviors on original/adversarial example pairs

• Making the same predictions (what) based on the same reasons (how) (consistent interpretations)

Model Prediction Interpretation Robustness

C
[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema

Prediction

Interpretation

Pos Neg

C
[Neg]Ori.
[Neg]Adv.

an exceedingly dull piece of cinema

an shockingly pesky piece of cinema

Prediction

Interpretation
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Question?
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Feature-level adversarial training (FLAT)

Ori.

a fantastic movie

a marvelous movie

Adv.
Model

positive
positive

Teach the model to make the same and correct predictions on an original/adversarial 
example pair based on the corresponding important words
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Feature-level adversarial training (FLAT)
Two desiderata for FLAT

• Global feature importance scores A:
teach the model to recognize the replaced words in an original example and their substitutions 
in the adversarial counterpart as the same important (or unimportant) for predictions

Vocab
!!
!"
⋮

Importance

##!
##"
⋮

### ∈ (0, 1)
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Feature-level adversarial training (FLAT)
Two desiderata for FLAT

• Global feature importance scores A:
teach the model to recognize the replaced words in an original example and their substitutions 
in the adversarial counterpart as the same important (or unimportant) for predictions

• Feature selection function #0 )
guide the model to make predictions based on the corresponding important words in the 
original and adversarial example respectively

Vocab
!!
!"
⋮

Importance

##!
##"
⋮

! *$ !

### ∈ (0, 1)
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Feature-level adversarial training (FLAT)
Objective

min0,1 ℒ2345 + Eℒ!62

ℒ%&'(
= - #,* ~, ℒ .- *$ ! , / + - #$,* ~,$ ℒ .- *$ !′ , /

ℒ./% = - #,#$ ~,∪,$ 2
., ##1##$

### − ###$

ℒ 4,4 : cross entropy loss

ℒ 4,4 : cross entropy loss

!: original example

!′: adversarial example
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Feature-level adversarial training (FLAT)
Objective

min0,1 ℒ2345 + Eℒ!62

ℒ./% = - #,#$ ~,∪,$ 2
., ##1##$

### − ###$

ℒ 4,4 : cross entropy loss How to learn 5 ?

How to select words via *$ 4 ?ℒ 4,4 : cross entropy loss

!: original example

!′: adversarial example

ℒ%&'(
= - #,* ~, ℒ .- *$ ! , / + - #$,* ~,$ ℒ .- *$ !′ , /
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Feature-level adversarial training (FLAT)
Learning with variational word masks (VMASK)

Hanjie Chen and Yangfeng Ji. “Learning variational word masks to improve the interpretability of neural text 
classifiers.” EMNLP, 2020

Model!

I
love

movie
this

Em
bedding layer

!!

⋯⋯

!"
!2
!3

Layers …

PredictionVM
ASK

7!

⋯

7"
72
73

7 = *$ ! = 8⨀! :4# ∈ {0, 1}
• Mask out irrelevant or noisy words
• Forward important words to the model

=

Training stage

Vocab
!5!
!5"

!5%
⋯

Masks
##&!

⋯

##&"

##&%

⋯

###: global word importance

• :4#~?@ABCDEEF ###
• 7. = :4# 4 !.,:4# ∈ {0, 1}
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Feature-level adversarial training (FLAT)
Learning with variational word masks (VMASK)

Hanjie Chen and Yangfeng Ji. “Learning variational word masks to improve the interpretability of neural text 
classifiers.” EMNLP, 2020

Model!

I
love

movie
this

Em
bedding layer

!!

⋯⋯

!"
!2
!3

Layers …

PredictionVM
ASK

7!

⋯

7"
72
73

Update

GInference network #

Training stage

Vocab
!5!
!5"

!5%
⋯

Masks
##&!

⋯

##&"

##&%

⋯

Information bottleneck

max",$ $ %,& ~( $) log ( ) *, , + . / 0) * ,

max
6
K L; N − O 4 K(L; P)

lower bound

=
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Feature-level adversarial training (FLAT)
Objective

min0,1 ℒ2345 + Eℒ!62

ℒ%&'( = - #,* ~, -7 ℒ .- 8⨀! , / − O 4 Q7 8 ! + - #$,* ~,$ -7$ ℒ .- 8′⨀!′ , / − O 4 Q7 8′ !′

ℒ./% = - #,#$ ~,∪,$ 2
., ##1##$

### − ###$

ℒ 4,4 : cross entropy loss, Q7 4 4 : conditional entropy

R = R$ 8 ! and R′ = R′$ 8′ !′ denote the distributions of word 
masks on the original example ! and adversarial example !’ respectively
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Feature-level adversarial training (FLAT)
Objective

min0,1 ℒ2345 + Eℒ!62

ℒ%&'( = - #,* ~, -7 ℒ .- 8⨀! , / − O 4 Q7 8 ! + - #$,* ~,$ -7$ ℒ .- 8′⨀!′ , / − O 4 Q7 8′ !′

ℒ./% = - #,#$ ~,∪,$ 2
., ##1##$

### − ###$

ℒ 4,4 : cross entropy loss, Q7 4 4 : conditional entropy

R = R$ 8 ! and R′ = R′$ 8′ !′ denote the distributions of word 
masks on the original example ! and adversarial example !’ respectively

Connection
FLAT degrades to traditional adversarial 
training when F = G and E = 0
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Feature-level adversarial training (FLAT)
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Experimental Setup

Models
• Recurrent neural network [Hochreiter and Schmidhuber 1997, LSTM]
• Convolutional neural network [Kim 2014, CNN]
• BERT [Devlin et al., 2019]
• DeBERTa [He et al., 2021]

Attacks

• Textfooler [Jin et al. 2020]
• PWWS [Ren et al. 2019]

Datasets
• IMDB [Maas et al., 2011]
• SST-2 [Socher et al., 2013]
• AG News (AG) [Zhang et al.,2015]
• TREC [Li and Roth, 2002]

(TextAttack benchmark [Morris et al. 2020])
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Experiments

Prediction accuracy (%) on standard test sets

“-base”: the base model trained on the clean data
“-adv”: the model trained via traditional adversarial training
“-FLAT”: the model trained via FLAT

ü Adversarial training (“adv” and “FLAT”) does not 
hurt model performance on clean data, and even 
improves prediction accuracy in some cases
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Experiments

Prediction robustness

CNN LSTM BERT DeBERTa

v

AA
(%
)

0

10

20

30
Base
Adv
FLAT

After-attack accuracy (AA): model prediction accuracy on adversarial examples 

(Textfooler, SST2)

ü Adversarial training improves model 
prediction robustness

ü FLAT consistently outperforms traditional
adversarial training
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Experiments

Interpretation Consistency

CNN LSTM BERT DeBERTa

v

KT

0

0.2

0.4

0.6

CNN LSTM BERT DeBERTa

v
0

0.2

0.4

0.6

TI

0.8

• Post-hoc interpretations: IG, LIME
• Kendall’s Tau order rank correlation (KT): overall rankings of word attributions between different interpretations
• Top-k intersection (TI): the proportion of intersection of top k important features identified by different interpretations

(Textfooler, SST2)

[Chen et al. 2019; Ghorbani et al. 2019, Boopathy et al. 2020] 

Base
Adv
FLAT

[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema
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Experiments

Interpretation Consistency

CNN LSTM BERT DeBERTa

v

KT

0

0.2

0.4

0.6

CNN LSTM BERT DeBERTa

v
0

0.2

0.4

0.6

TI

0.8

• Post-hoc interpretations: IG, LIME
• Kendall’s Tau order rank correlation (KT): overall rankings of word attributions between different interpretations
• Top-k intersection (TI): the proportion of intersection of top k important features identified by different interpretations

(Textfooler, SST2)

[Chen et al. 2019; Ghorbani et al. 2019, Boopathy et al. 2020] 

Base
Adv
FLAT

ü Traditional adversarial training 
cannot guarantee model 
robustness regarding 
interpretation discrepancy

ü FLAT consistently improves 
model interpretation 
consistency

[Pos]Ori.
[Pos]Adv.

an exceedingly clever piece of cinema

an shockingly proficient piece of cinema
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Experiments

Visualization of interpretations

Both LSTM-FLAT and CNN-FLAT correctly predict the original/adversarial example pairs 
with consistent interpretations
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Experiments

Transferability of model robustness
Test with six unforeseen adversarial attacks: PWWS [Ren et al. 2019], Gene [Alzantot et al. 2018], IGA 
[Wang et al. 2019], PSO [Zang et al. 2020], Clare [Li et al. 2021], and BAE [Garg and Ramakrishnan 2020]

ü The models trained via FLAT show 
better robustness than baseline 
models across different attacks
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Question?
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