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What is attribution?

How to compute attribution?

What is the vulnerability issue of attribution methods?
Why should attribution methods be robust?

How to enforce attribution robustness?
What are the benefits of attribution robustness?



Overview

 What is attribution?

* How to compute attribution?

 What is the vulnerability issue of attribution methods?
* Why should attribution methods be robust?

 How to enforce attribution robustness?

 What are the benefits of attribution robustness?



What is Attribution?

According to Merriam-Webster: “attribution” means
“to explain (something) by indicating a cause”.




Human Learning

Do you see a dog?




Human Learning

What makes you think so? Because | see this!




Machine Learning

Machine learning is like human learning.

Training Data Test Data
e ! :\o .:‘ el

Learning
Algorithm




Deep Neural Networks

A neural network with some level of complexity, usually at least two
layers, qualifies as a Deep Neural Network (DNN).

Outdoor

__ Indoor

Outdoor




Deep Learning Breakthroughs

Polaroid camera| | typewriter keyboard
pencil sharpener space bar ground beetle

switch computer keyboard common newt
combination lock accordion water snake

- mpshaﬁ

throne
goblet reflex camera
table lamp dial telephone

Saint Bernard hamper iPod

Image Classification

Google Translate

- ChlTBIR

Machine Translation

At last — a computer program that
can beat a champion Go player PAGE484
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Deep Learning Challenges

* Blackbox: not too much understanding/interpretation

classified as classified as
Stop Sign Max Speed 100
97% confidence 98% confidence
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Why DNN Models are Vulnerable?

Deep Neural Networks (DNNs) may use spurious correlation for prediction.

Training Data Test Data

How will the
DNN behave?
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Attribution in Machine Learning

Attribution: attributing the prediction of a DNN to its input features.

Original image Top label and score Integrated gradients

Top label: reflex camera

Score: 0.993755

how many townships have a population above 50 ? [prediction: NUMERIC]

what is the difference in population between fora and masilo [prediction: NUMERIC]
how many athletes are not ranked ? [prediction: NUMERIC]

what is the total number of points scored ? [prediction: NUMERIC]

which film was before the audacity of democracy ? [prediction: STRING]

which year did she work on the most films ? [prediction: DATETIME]

what year was the last school established ? [prediction: DATETIME]

when did ed sheeran get his first number one of the year ? [prediction: DATETIME]
did charles oakley play more minutes than robert parish ? [prediction: YESNO]

Top label: fireboat
Score: 0.999961

Attributions for Question Classification

Attributions for Image Classification
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Suppose we have a function F: R™ — [0,1] that represents a deep network,
and an input x = (x4, ..., X,) € R™. An attribution of the prediction at input x
relative to a baseline input x' is a vector Az(x,x") = (a4, ...,a,) € R™ where
a; is the contribution of x; to the prediction F(x).

F(x)
Cabbage Butterfly
Score: 0.996

4

X




* The need for a baseline is central to any explanation method. In a
sense, it is the counterfactual for causal reasoning.
* The network must have a truly neutral prediction at the baseline input.



Question?
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Overview

 What is attribution?

* How to compute attribution?

 What is the vulnerability issue of attribution methods?
* Why should attribution methods be robust?

 How to enforce attribution robustness?

 What are the benefits of attribution robustness?
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Gradients

Deeplift

Layer-wise Relevance Propagation (LRP)
Deconvolutional Networks

Guided Back-propagation

Integrated Gradients



Sundararajan et al.s Approach:
e Define a set of reasonable axioms for attribution methods.
e Check if the attribution method satisfies them.

Sundararajan, Mukund, Ankur Taly, and Qigi Yan. "Axiomatic attribution for deep networks." ICML, 2017.



Sensitivity: If starting from baseline, varying a variable changes the
output, then the variable should receive some attribution.

Insensitivity: A variable that has no effect on the output gets no
attribution.

Point for Pure gradients do not satisfy Sensitivity

attribution, \hen predictions saturate.
gradient=0

-

X

baseline at 0



* Implementation Invariance: Two functionally equivalent networks
have identical attributions for all inputs and baseline.

* Linearity: If the function F is a linear combination of two functions F;,
F,, then the attributions for F are a linear combination of the

attributions for Fy, F>.
 Symmetry: If a function is symmetric across two input variables then

the variables should receive identical attribution.



Completeness: Sum(attributions) = F(input) - F(baseline).

Break down the predicted click through rate (pCTR) of an ad like:
 55% of pCTR is because it’s at position 1.
e 25% is due to its domain (a popular one).



* The integrated gradient (IG) along the i** dimension for an input x and
baseline x’ is defined as follows:

L 9F(x" + ax(x — x'
16,) = G = x)x o raxtx= X)),

a

* |G satisfies the completeness axiom: if F is differentiable almost
everywhere, then ),/ IG;(x) = F(x) — F(x').

Sundararajan, Mukund, Ankur Taly, and Qigi Yan. "Axiomatic attribution for deep networks." ICML, 2017.



Theorem: Integrated Gradients is the uniqgue method satisfying:
* Sensitivity, Insensitivity

* Implementation Invariance, Linearity, Symmetry

* Completeness

up to the errors from approximating integration.



 The integral of IG can be efficiently approximated via a summation:

!/ k !/
approx / m " (x " m X(x i )> 1
IG; (x) = (x; — xl-)xz: Tx X
k=1 xl m
Here, m is the number of steps in the Riemman approximation of the integral.
* Step-size m: check if completeness holds. If not, increase m.

e Baseline x': select x’ that leads to a near-zero score.




def integrated gradients(inp, baseline, label, steps=range(50)):
t _input = input_tensor() # 1input tensor
t _prediction = prediction_tensor(label) # output tensor
t gradients = tf.gradients(t_prediction, t _input)[@] # gradients
path_inputs = [baseline + (i/steps)*(inp-baseline) for i in steps]
grads = run_network(t _gradients, path_inputs)

return (inp-baseline)*np.average(grads, axis=0) # 1integration
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We can use |G for Diabetic Retinopathy Prediction where feature importance
explanations are important for specialists to build trust in the network’s predictions.

Attribution for Diabetic Retinopathy grade prediction from a retinal fundus image. y



Question?
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 What is the vulnerability issue of attribution methods?



As Ghorbani et al. convincingly demonstrated, for existing DNNs, one can generate
minimal input perturbations that substantially change model attributions, while
keeping their (correct) predictions intact.

Simple Gradient
“Llama” : Confidence 55.4

DeepLIFT
“Monarch” : Confidence 99.9

Feature-Importance Map

Integrated Gradients
) “Llama” :VConﬂdence 711

Feature-Importance Map

Feature Importance Map

)
o s0
160 100
150 150
L& 4
("
200 200
o 50 100 150 200

Ghorbani, Amirata, Abubakar Abid, and James Zou. "Interpretation of neural networks is fragile." AAAI 2019

Feature-Importance Map

Feature Importance Map

Original

“Llama” : Confidence 99.8

Feature-Importance Map

“Monarch” : Confidence 99.9

Perturbed

(b)
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For a given neural network V' with fixed weights and a test data point x;, the
feature importance method produce an interpretation I(x¢; V'), which is a
vector of normalized feature scores. The attribution attack objective is:

arg max D (xg; N), [(xy + 6; N))

subject to: ||(5||oo <€

Prediction(x; + 6; N') = Prediction(x:; N)
where D(-) measures the change in interpretation and € > 0 constrains the
norm of the perturbation.



Algorithm Iterative Feature Importance Attacks

Input: test image x;, perturbation budget €, normalized feature importance function I(+), number of

iterations P, step size «.

Define a dissimilarity function D to measure the change between interpretations of two images:

D(xti X) — <

[ - ZiEB I(x); for top-k attack
Zie A I (x)l for targeted attack

where B is the set of the k largest

kl |C(x) — C(x¢)| |2 for mass-center attack

dimensions of I(x;), A is the target region of the input image in

targeted attack, and C () is the center of feature importance mass.

Initialize x¥ = x,
forp € {1,...,P} do
Perturb the test image:

xP =xP 14 . sign(V,.D(x,, xp_l))

If needed, clip the perturbed input to satisfy: ||xp — X |OO <€

end for

Among {x1, ..., xF}, return the element with the largest value for the dissimilarity function and the

same prediction as the original te

st image.
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Spearman’s correlation: use the rank correlation to compare the
similarity between two attributions.

Top-k intersection: compute the size of intersection of the k most
important features of the two attributions divided by k.

2
_ 62 4d; . .
p=1-— 5 The indices of the 5 most important features
n(n o 1) of attribution A is {0, 1, 2, 3, 4} while the

| . indices of the 5 most important features of
P = Spearman's rank correlation coefficient

d: = difference between the two ranks of each attribUtion Bis {—’—'3 4 5’ 6' 7}' Then the tOp-5
* ~ observation intersection of A and B is 0.4.

T = number of observations



Top-k and Mass-center Attack Results

Simple Gradient

—&— Top-k attack
—eo— Center attack
—%— Random Sign Perturbation

oo

2 4
L norm of perturbation

—=— Top-k attack
—eo— (Center attack
—%— Random Sign Perturbation

2 4 8
L. norm of perturbation

o
S04

DeepLIFT

—&— Top-k attack
—o— Center attack
—¥— Random Sign Perturbation

(o]

2 4
L., norm of perturbation

—&— Top-k attack
—o— (Center attack
—%— Random Sign Perturbation

2 4 8

L. norm of perturbation

Integrated Gradients

—&— Top-k attack
—eo— Center attack
—%— Random Sign Perturbation

o 1 2 4 8

L. norm of perturbation

—#— Top-k attack
—o— Center attack

| =—*— Random Sign Perturbation

o 1 2 4 8

L. norm of perturbation
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Targeted Attack Results

Simple Gradient

Original Image

~

0Original Image Saliency Map
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Question?
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* Why should attribution methods be robust?



Model attributions are facts about model behaviors. While robust
attribution does not necessarily mean that the attribution is correct, a
model with brittle attribution can never be trusted.



In safety critical applications, the users need to check the attribution to see
whether the model’s predictions could be trusted. If the attributions are
brittle, the users will find it difficult to trust the model.

sheeze

Flu

weight
headache
no fatigue
age

PN

Model Data and Prediction

sneeze

Explainer

headache

no fatique 4

Explanation

Human makes decision
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e How to enforce attribution robustness?



Robust Prediction Correlates with Robust Attribution: Why?

Empirical results demonstrate that if the model has robust prediction,
usually it also has robust attribution.

original image,
normally trained model

perturbed image,
normally trained model
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Robust Prediction Correlates with Robust Attribution: Why?

Empirical results demonstrate that if the model has robust prediction,
usually it also has robust attribution.

original image,
robustly trained model

perturbed image,
robustly trained model
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Adversarial Training (AT)

Training for robust prediction: find a model that predicts the same label
for all perturbed inputs around the training input.

max, 2(x',y; 9)]

Perturbed input Allowed perturbations

Madry, Aleksander, et al. “Towards deep learning models resistant to adversarial attacks.” ICLR 2018
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We use projected gradient descent (PGD) to solve the inner maximization
problem and then use stochastic gradient descent (SGD) to optimize the
model parameters.

min E
6

(x,y)~P [x

£(x',y;
g, £

9)] -

4 0 )
x0 =x

x =Ty (& + a - sign(V£(xh, y; 0)))
x/ — xT

\_ J

PGD

- [ 0'=0—n-Vel(x',y;0) ] SGD
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Robust Attribution Regularization (RAR)

Training for robust attribution: find a model that can get similar attributions
for all perturbed inputs around the training input.

mgin Exy)~plf(x,y;0) + 1 - RAR]

RAR = max s(IG(x,x"))
x'eA(x)

Perturbed input Allowed perturbations

Chen, Jiefeng, et al. "Robust attribution regularization." NeurlPS 2019.
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Robust Attribution Regularization (RAR)

Training for robust attribution: find a model that can get similar attributions
for all perturbed inputs around the training input.

mgin Exy)~plf(x,y;0) + 1 - RAR]

RAR = max s(IG(x,x"))
x'eA(x)

Integrated Gradient

Chen, Jiefeng, et al. "Robust attribution regularization." NeurlPS 2019.
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e The IG function for RAR is defined as:

1 I
1G,(x, x') = (xi’_xi)xj 04y (x + ax(x x))d

!/
a=0 axi

where £,,(x) = £(x,y; 0) is the loss function. The input x is regarded as the
baseline.
* From the axiom of Completeness, we have
d
2 1Gi(x,x") = £(x",y;0) — £(x,y;0)

=1
* |Inimplementation, we use summation approximation of IG:

a4, (x + n%x(x’ — x))

m 1
Iquprox ’ N o— (! — o Xz X
) = ()X ) 5 —

a




* Robust attribution regularization:
m@in Exy~plf(x,y;0) + 1 * RAR]

RAR = max s(IG(x,x"))
x'eA(x)

 IfA=1ands(-) =sum(-), then RAR becomes the Adversarial
Training objective for robust prediction:
in Eyy)~ LY
min Ecy)-p [x, gzlv%)c(,e) £(x',y 9)]

simply by the Completeness of IG.

Madry, Aleksander, et al. “Towards deep learning models resistant to adversarial attacks.” ICLR 2018
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Theorem. Consider the special case of one-layer neural networks, where
the loss function takes the form of £(x, y; w) = g(—y{(w, x)). Suppose g
is nonnegative, differentiable, non-decreasing, and convex. Then for A =

1,s(-) = ||I-ll, and £ neighborhood, RAR training objective reduces to
adversarial training objective:

m
z max g(—yi(w, x{)) (Adversarial training objective)
— || =] <€

m
= g(=yitw, xi) + ellwlly) soft-margin
=1



For the special case of one-layer neural networks (linear function), the
robust attribution instantiation (s(-) = || - ||1) and the robust prediction
instantiation (s(-) = sum(-)) coincide, and both reduce to soft max-
margin training.
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* Robust attribution regularization:

mein Ex~plf(x,y;0) + A« RAR]

RAR = max s(IG(x,x"))
x'eA(x)

e IfA=1/elands(:) = ||-||§I with approximate |G, then RAR becomes
the Input Gradient Regularization for robust prediction:

min E(yy)-p[£063;0) + 211V, £(x,y; 0) 1]

Ross, Andrew, and Finale Doshi-Velez. “Improving the adversarial robustness and interpretability of deep
neural networks by regularizing their input gradients.” AAAI 2018.
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* IG-NORM: if we pick s(-) = |||, then this gives

m@in E(xy)~pP [f(x,y; 0)+A1- ,HIIVE%X TG (x, x4 ]

* |IG-SUM-NORM!: if we define s(:) = sum(:) + B||:||{, where 8 = 0is a
regularization parameter, and set A = 1, then this gives

min E(y,y).p [ max 2(x',y;0) + B - |[1G(x, x )||1]



Given (x,y) at time step t during training, we have the following two steps:
1) Attack step: we run PGD on (x, y) to find x* that produces a large
inner max term (i.e., [|IG(x, x*)||; for IG-NORM and £(x*,y; 8) +

B - I1IG(x, x*)||; for IG-SUM-NORM).
2) Gradient step: fixing x*, we can then compute the gradient of the
corresponding loss with respect to 8, and then update the model.



Due to the summation approximation of IG, we have first order terms in
the training objective. It forces us to compute second derivatives, which
may not be numerically stable for deep networks.

min Eqey)-p [£06;6) + A+ max _[IGPP% (e, x|

N(x,e

k ’
. 0£y<x+ﬁ><(x —x)) 1

IGiapprox(x, xl) — (xll . xi)xz ™ X —
k=1 Xi m




Experiments: Qualitative

NATURAL IG-NORM JG-SUM-NORM

Original Image Original Image Saliency Map ginal Image riginal Image Saliency Map

Perturbed Image Saliency Map

Perturbed Image Saliency Ma

Flower dataset



NATURAL

Original Image Salienc a

Original Image

Perturbed Image

Perturbed Image Saliency Ma

IG-NORM

Original Image Original Image Saliency Ma

Perturbed Image Saliency Ma

Perturbed Image

MNIST dataset

IG-SUM-NORM

Original Image

Perturbed Image

Original Image Saliency Ma

Perturbed Image Saliency Ma
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NATURAL

Original Image Original Image Saliency Map

IG-NORM IG-SUM-NORM

Original Image Original Image Saliency Ma Original Image Original Imag

Perturbed Image Saliency Ma

Perturbed Image Saliency Map Perturbed Image

Fashion-MNIST dataset



NATURAL IG-NORM IG-SUM-NORM

Original Image Original Image Saliency Map Original Image Original Image Saliency Ma Original Image Original Image Saliency Ma

Perturbed Image Saliency Ma Perturbed Image Saliency Ma Perturbed Image Saliency Map

GTSRB dataset



Metrics for attribution robustness:
1. Kendall’s tau rank order correlation.
2. Top-K intersection.

Original Image Attribution Map Perturbed Image Attribution Map

Top-1000 Intersection: 0.1%
Kendall’s Correlation: 0.2607
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Experiments: Quantitative

10 -
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Prediction Accuracy of Different Models

NATURAL 99.17% 0.00%

AT 98.40% 92.47%

MINIST IG-NORM 98.74% 81.43%
IG-SUM-NORM 98.34% 88.17%

NATURAL 90.86% 0.01%

e T AT 85.73% 73.01%
IG-NORM 85.13% 65.95%

IG-SUM-NORM 85.44% 70.26%

NATURAL 98.57% 21.05%

AT 97.59% 83.24%

GTSRS IG-NORM 97.02% 75.24%
IG-SUM-NORM 95.68% 77.12%

NATURAL 86.76% 0.00%

AT 83.82% 41.91%

Flower IG-NORM 85.29% 24.26%

IG-SUM-NORM 82.35% 47.06%



Our main findings can be summarized as follows:

1.

Compared with naturally trained models, RAR only results in a very
small drop in test accuracy;

Our method gives significantly better attribution robustness, as
measured by correlation analyses;

Our models yield comparable prediction robustness (sometimes even
better), compared with adversarially trained models (for robust
prediction), while consistently improving attribution robustness;
Intriguingly, RAR leads to much more human aligned attribution.



e What are the benefits of attribution robustness?



Benefits of Attribution Robustness

* Robust attribution correlates with robust prediction.

* Robust attribution leads to more human-aligned attribution.

* Robust attribution may help tackle spurious correlations.

NATURAL IG-SUM-NORM

Orig inallmae Original Image Saliency Map Oriinallmae Original Image Saliency Map

Perturbed Image Saliency Map

Top-1000 Intersection: 0.1% Top-1000 Intersection: 60.1%
Kendall’s Correlation: 0.2607 Kendall’s Correlation: 0.6951
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Question?
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