

CS 4501/6501 Interpretable Machine Learning

Interpretation and Human Understanding

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

Properties

• Faithfulness to model

How accurately an interpretation reflects the true reasoning process of the model

• Plausibility to humans

How convincing the interpretation is to humans [Jacovi and Yoav, 2020]

Properties

• Faithfulness to model

How accurately an interpretation reflects the true reasoning process of the model

• Plausibility to humans

How convincing the interpretation is to humans

[Jacovi and Yoav, 2020]

- Generally, it is not easy to satisfy both criteria because of the gap between model reasoning and human understanding
- Faithfulness is the primary criterion

Simulatability

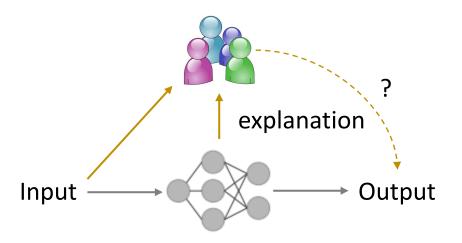
A model is simulatable when a person can predict its behavior on new inputs [Doshi-Velez and Kim, 2017]

Simulatability

A model is simulatable when a person can predict its behavior on new inputs [Doshi-Velez and Kim, 2017]

Human-subject tasks

• Forward simulation: given an input and an explanation, users must predict what a model would output for the given input

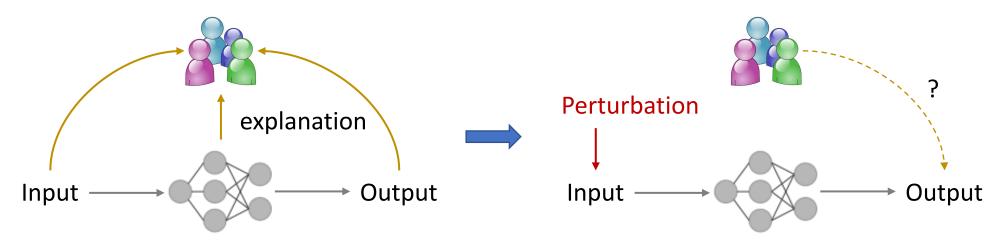


Simulatability

A model is simulatable when a person can predict its behavior on new inputs [Doshi-Velez and Kim, 2017]

Human-subject tasks

 Counterfactual simulation: users are given an input, a model's output for that input, and an explanation of that output, and then they must predict what the model will output when given a perturbation of the original input



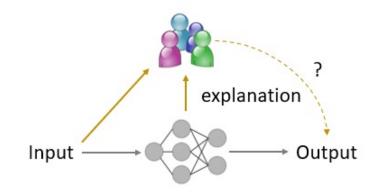
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?

Peter Hase and Mohit Bansal

(ACL, 2020)

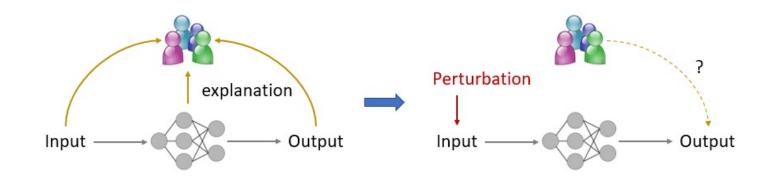
Problem

• Forward simulation

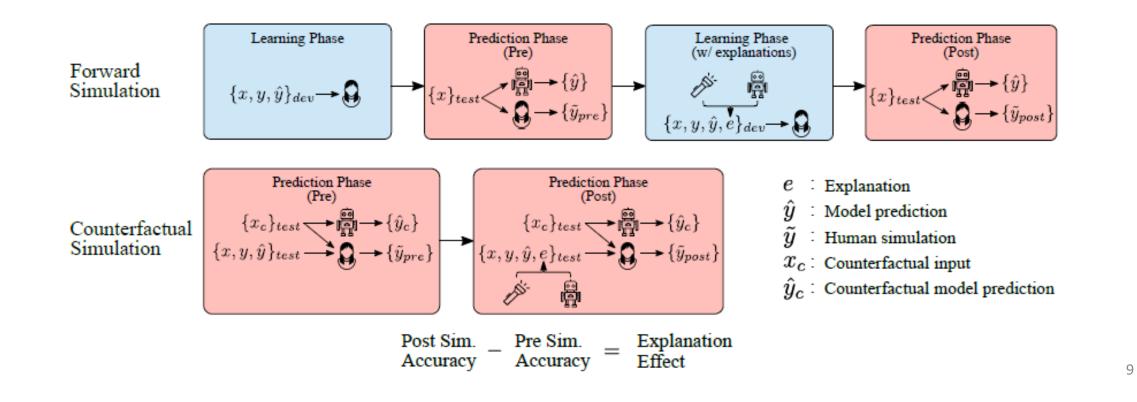


- Humans really understand model prediction behavior?
- Explanations give away the answers?

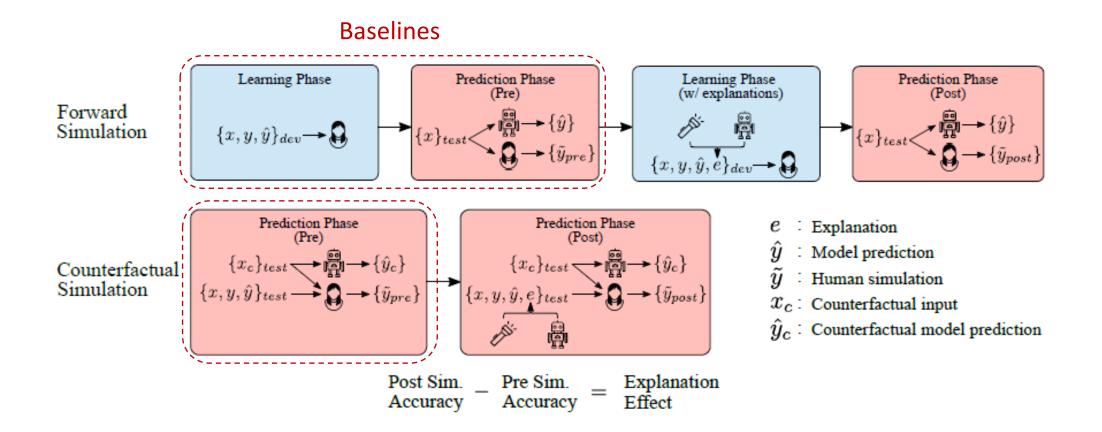
• Counterfactual simulation



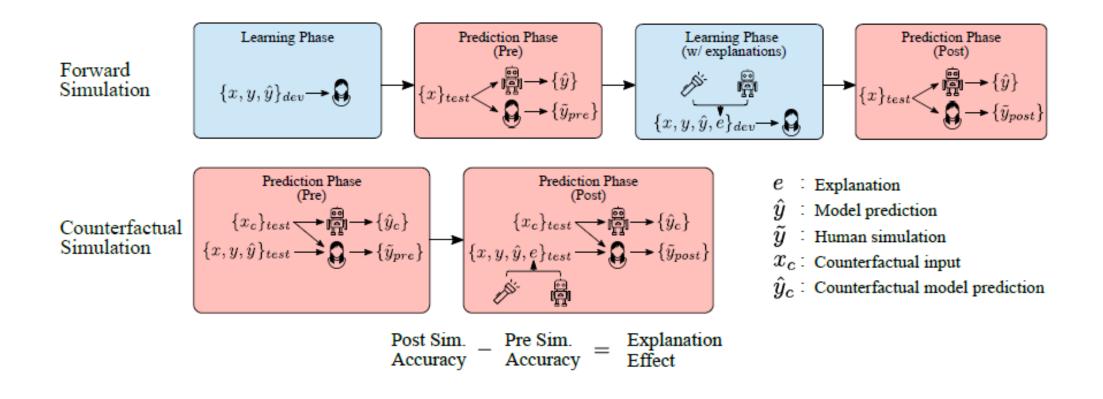
• Separate the explained instances from the test instances to prevent explanations from giving away the answers



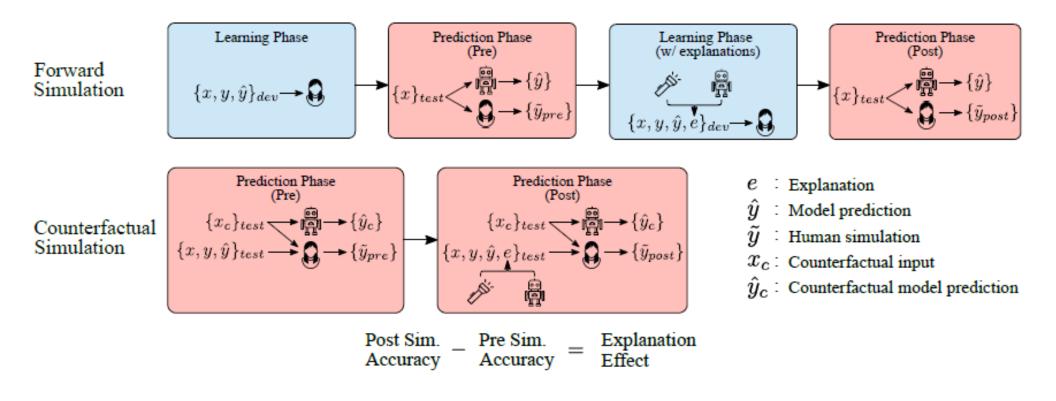
- Separate the explained instances from the test instances to prevent explanations from giving away the answers
- Evaluate the effect of explanations against a baseline where users see the same example data points without explanations



- Separate the explained instances from the test instances to prevent explanations from giving away the answers
- Evaluate the effect of explanations against a baseline where users see the same example data points without explanations
- Balance data by model correctness (users cannot succeed simply by guessing the true label)



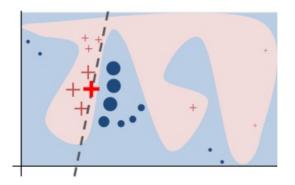
- Separate the explained instances from the test instances to prevent explanations from giving away the answers
- Evaluate the effect of explanations against a baseline where users see the same example data points without explanations
- Balance data by model correctness (users cannot succeed simply by guessing the true label)
- Force user predictions on every input (not favor some explanations)



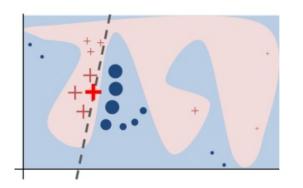
12

Question?

LIME [Ribeiro, 2016]



LIME [Ribeiro, 2016]

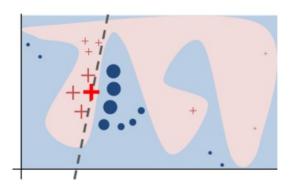


Anchors [Ribeiro, 2018] Local rule lists

+ This movie is not bad.

{"not", "bad"} → Positive

LIME [Ribeiro, 2016]



Anchors [Ribeiro, 2018] Local rule lists

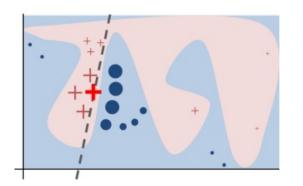
{"not", "bad"} → Positive

Prototype

 $f(x)_{c} = \max_{p_{k} \in P_{c}} a(g(x), p_{k})$ $Attr(x_{i}) = f(x)_{c} - f(x_{\setminus x_{i}})_{c}$

c: class
P_c: a set of prototype vectors
a: similarity function
g: a neural network

LIME [Ribeiro, 2016]



Anchors [Ribeiro, 2018]

Local rule lists

This movie is not bad.

{"not", "bad"} → Positive

Prototype

 $f(x)_{c} = \max_{p_{k} \in P_{c}} a(g(x), p_{k})$ $Attr(x_{i}) = f(x)_{c} - f(x_{\backslash x_{i}})_{c}$

c: class
P_c: a set of prototype vectors
a: similarity function
g: a neural network

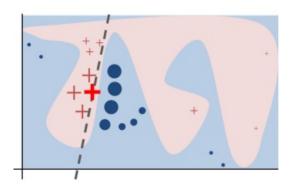
Decision Boundary

Input, Label, and Model Output

x = Despite modest aspirations its occasional charms are not to be dismissed.<math>y = Positive $\hat{y} = Negative$

Decision BoundaryStep 0Evidence Margin: -5.21Step 1occasional \rightarrow rare
Evidence Margin: -3.00Step 2modest \rightarrow impressive
Evidence Margin: +0.32 $x^{(e)}$ Despite impressive aspirations its rare
charms are not to be dismissed.

LIME [Ribeiro, 2016]



Anchors [Ribeiro, 2018] Local rule lists

This movie is not bad.

{"not", "bad"} → Positive

Prototype

 $f(x)_{c} = \max_{p_{k} \in P_{c}} a(g(x), p_{k})$ $Attr(x_{i}) = f(x)_{c} - f(x_{\setminus x_{i}})_{c}$

c: class
P_c: a set of prototype vectors
a: similarity function
g: a neural network

Decision Boundary

Input, Label, and Model Output

x = Despite modest aspirations its occasional charms are not to be dismissed.<math>y = Positive $\hat{y} = Negative$

Decision BoundaryStep 0Evidence Margin: -5.21Step 1occasional \rightarrow rare
Evidence Margin: -3.00Step 2modest \rightarrow impressive
Evidence Margin: +0.32 $x^{(e)}$ Despite impressive aspirations its rare
charms are not to be dismissed.

Composite Approach

Combine LIME/Anchors/Prototy pe/Decision Boundary

Question?

- Data and task models
- Movie Reviews [Pang et al., 2002]

Task: binary sentiment classification

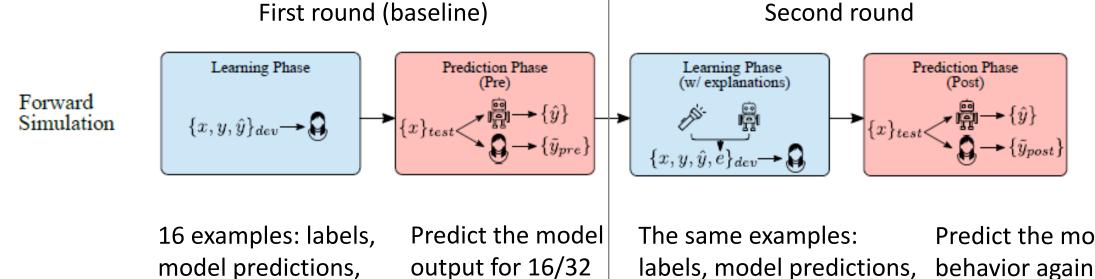
Model: hierarchical attention network [Yang et al., 2016]

- Tabular Adult Data [Dua and Graff, 2017]

Task: predict whether the annual income is more than \$50,000Model: a neural network with two hidden layers[Ribeiro, 2018]

- User pool
 - 32 trained undergraduates who had taken at least one course in computer science or statistics
 - gather over 2100 responses via in-person tests
 - screen out invalid responses (low scores in screening test, task completion time is extremely low)

Forward simulation ${\bullet}$

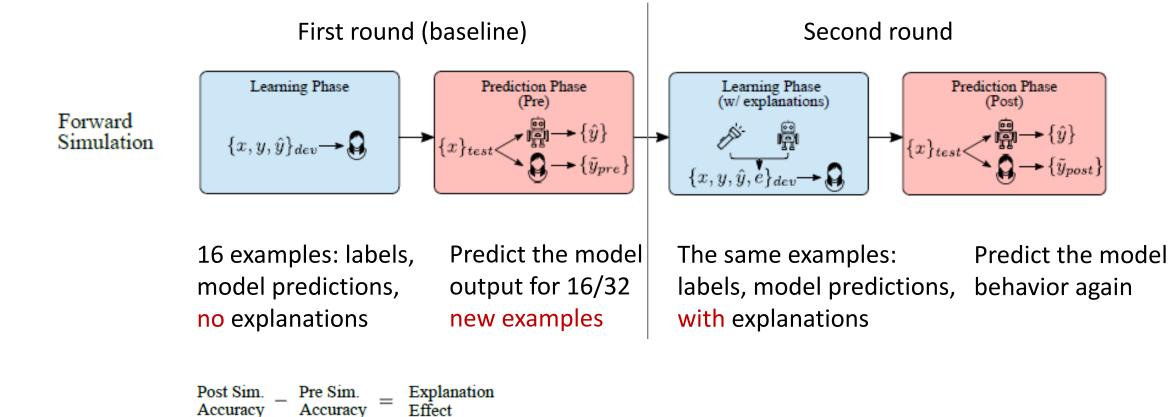


no explanations

output for 16/32 new examples

Predict the model behavior again with explanations

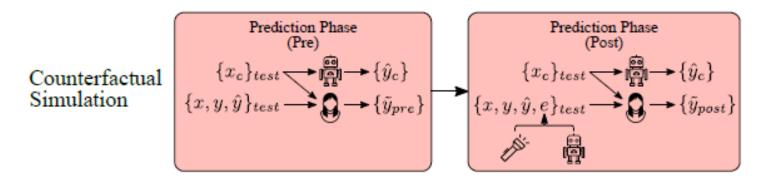
• Forward simulation



23

• Counterfactual simulation

Ask users to predict how a model will behave on a perturbation of a given data point

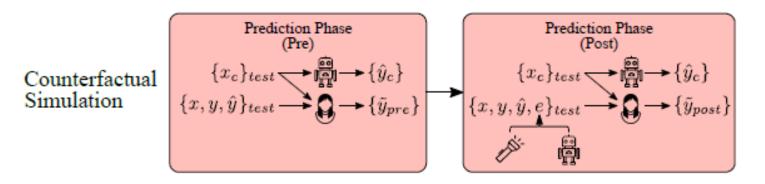


Examples: labels, model predictions, no explanations, perturbations

(e.g., randomly substitute words with their neighbors)

• Counterfactual simulation

Ask users to predict how a model will behave on a perturbation of a given data point



Examples: labels, model predictions, no explanations, perturbations

(e.g., randomly substitute words with their neighbors)

The same examples with explanations

Post Sim.	Pre Sim.	Explanation
Accuracy	Accuracy -	Effect

- Data Balancing
- Goal : prevent users from succeeding on the tests simply by guessing the true label
- True positives, false positives, true negatives, and false negatives are equally represented
- For the counterfactual test, there is a 50% chance that the perturbation receives the same prediction as the original input

Do explanations help users?

Explanation effectiveness: the difference in user accuracy across prediction phases in simulation tests

confidence interval

		Text					Tabular						
Method	n	Pre	Change	CI	p	n	Pre	Change	CI	p			
User Avg.	1144	62.67	-	7.07	-	1022	70.74	-	6.96	-			
LIME	190	-	0.99	9.58	.834	179	-	11.25	8.83	.014			
Anchor	181	-	1.71	9.43	.704	215	-	5.01	8.58	.234			
Prototype	223	-	3.68	9.67	.421	192	-	1.68	10.07	.711			
DB	230	-	-1.93	13.25	.756	182	-	5.27	10.08	.271			
Composite	320	-	3.80	11.09	.486	254	-	0.33	10.30	.952			

Do explanations help users?

• LIME improves simulatability with tabular data, while other methods do not definitively improve simulatability in either domain

		Text					Tabular						
Method	n	Pre	Change	CI	p	n	Pre	Change	CI	p			
User Avg.	1144	62.67	-	7.07	-	1022	70.74	-	6.96	-			
LIME	190	-	0.99	9.58	.834	179	-	11.25	8.83	.014			
Anchor	181	-	1.71	9.43	.704	215	-	5.01	8.58	.234			
Prototype	223	-	3.68	9.67	.421	192	-	1.68	10.07	.711			
DB	230	-	-1.93	13.25	.756	182	-	5.27	10.08	.271			
Composite	320	-	3.80	11.09	.486	254	-	0.33	10.30	.952			

Do explanations help users?

- LIME improves simulatability with tabular data, while other methods do not definitively improve simulatability in either domain
- Even with combined explanations in the Composite method, no definitive effects on model simulatability

		Text					Tabular						
Method	n	Pre	Change	CI	p	n	Pre	Change	CI	p			
User Avg.	1144	62.67	-	7.07	-	1022	70.74	-	6.96	-			
LIME	190	-	0.99	9.58	.834	179	-	11.25	8.83	.014			
Anchor	181	-	1.71	9.43	.704	215	-	5.01	8.58	.234			
Prototype	223	-	3.68	9.67	.421	192	-	1.68	10.07	.711			
DB	230	-	-1.93	13.25	.756	182	-	5.27	10.08	.271			
Composite	320	-	3.80	11.09	.486	254	-	0.33	10.30	.952			

Do explanations help users?

- LIME improves simulatability with tabular data, while other methods do not definitively improve simulatability in either domain
- Even with combined explanations in the Composite method, no definitive effects on model simulatability

			Text						Tabular			
Method	n	Pre	Change	CI	p		n	Pre	Change	CI	p	
User Avg.	1144	62.67	-	7.07	-		1022	70.74	-	6.96	-	
LIME	190	-	0.99	9.58	.834		179	-	11.25	8.83	.014	
Anchor	181	-	1.71	9.43	.704		215	-	5.01	8.58	.234	
Prototype	223	-	3.68	9.67	.421		192	-	1.68	10.07	711	
DB	230	-	-1.93	13.25	.756		15 _					
Composite	320	-	3.80	11.09	.486		2: EX	Evolution mothods may not				
1							help users understand how models will behave					

How do users rate explanations?

Users rate each method on a 7-point scale, in response to the question, "Does this explanation show me why the system thought what it did?"

		Text I	Ratings		Tabular Ratings					
Method	n	μ	CI	σ	n	μ	CI	σ		
LIME	144	4.78	1.47	1.76	130	5.36	0.63	1.70		
Anchor	133	3.86	0.59	1.79	175	4.99	0.71	1.38		
Prototype	191	4.45	1.02	2.08	144	4.20	0.82	1.88		
DB	224	3.85	0.60	1.81	144	4.61	1.14	1.86		
Composite	240	4.47	0.58	1.70	192	5.10	1.04	1.42		

How do users rate explanations?

Users rate each method on a 7-point scale, in response to the question, "Does this explanation show me why the system thought what it did?"

- Users rated explanations based on quality rather than model correctness
- Ratings are generally higher for tabular data, relative to text data
- The Composite and LIME methods receive the highest ratings

Method		Text l	Ratings		Tabular Ratings					
	n	μ	CI	σ	n	μ	CI	σ		
LIME	144	4.78	1.47	1.76	130	5.36	0.63	1.70		
Anchor	133	3.86	0.59	1.79	175	4.99	0.71	1.38		
Prototype	191	4.45	1.02	2.08	144	4.20	0.82	1.88		
DB	224	3.85	0.60	1.81	144	4.61	1.14	1.86		
Composite	240	4.47	0.58	1.70	192	5.10	1.04	1.42		

Can users predict explanation effectiveness?

Measure how explanation ratings relate to user correctness in the Post phase of the counterfactual simulation test

Can users predict explanation effectiveness?

Measure how explanation ratings relate to user correctness in the Post phase of the counterfactual simulation test

There is no evidence that explanation ratings are predictive of user correctness

Example:

Rating: 4 -> 5 Correctness: -2.9 ~ 5.2 percentage point change

Qualitative Analysis

• Explanation failure example

Only 7 of 13 responses were correct after seeing explanations (with no method improving correctness)

Original $(\hat{y} = pos)$: "A bittersweet film, simple in form but rich with human events."

Counterfactual ($\hat{y}_c = neg$): "A teary film, simple in form but vibrant with devoid events."

Discussion

• Forward tests stretch user memory

Some users reported that it was difficult to retain insights from the learning phase during later prediction rounds

• Counterfactual examples are out of the data distribution

Question?

Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations

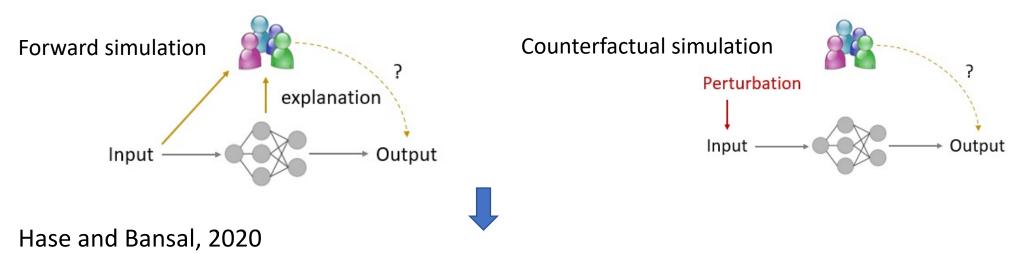
Siddhant Arora, Danish Pruthi, Norman Sadeh, WilliamW. Cohen, Zachary C. Lipton, Graham Neubig

(AAAI, 2022)

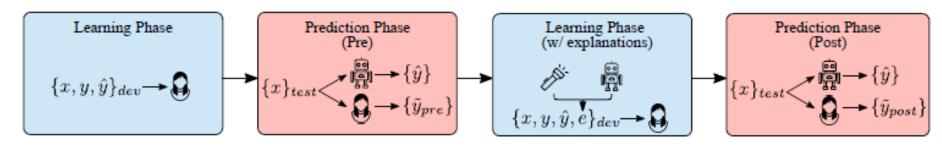
Problem

Doshi-Velez and Kim, 2017

Explanations give away the answers



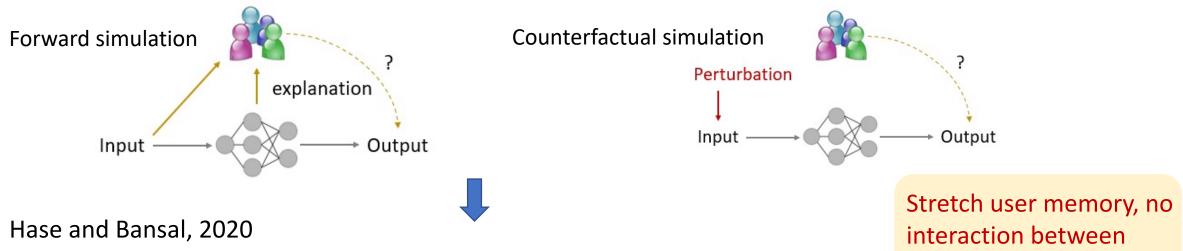
Separate the explained instances from the test instances, compare with a baseline



Problem

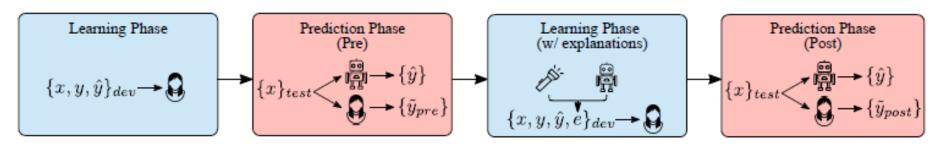
Doshi-Velez and Kim, 2017

Explanations give away the answers



Separate the explained instances from the test instances, compare with a baseline

users and models



Method

- Provide participants with query access to the model
 Users can alter input documents to observe how model predictions and explanations change in real time
- Prompt participants to edit examples to reduce the model confidence towards the predicted class

Interface

a. Can you guess the AI system outcome?

Determine if the review below is predicted genuine or fake by the AI system (Can only select once)

⊖ genuine

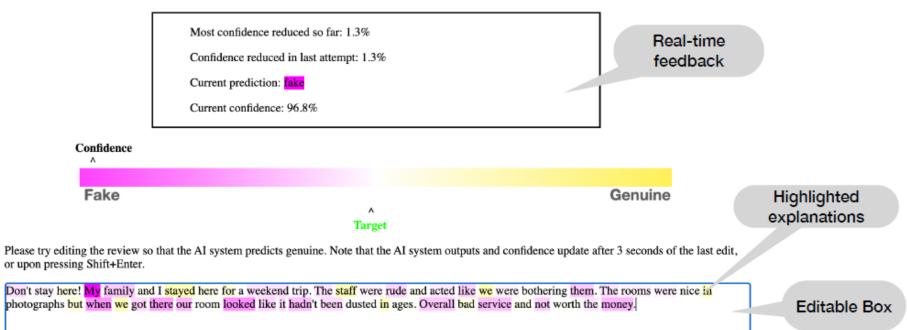
 \bigcirc fake

Don't stay here! My family and I stayed here for a weekend trip. The staff were rude and acted like we were bothering them. The rooms looked nice in photographs but when we got there our room looked like it hadn't been dusted in ages. Overall bad service and not worth the money.

Input Review

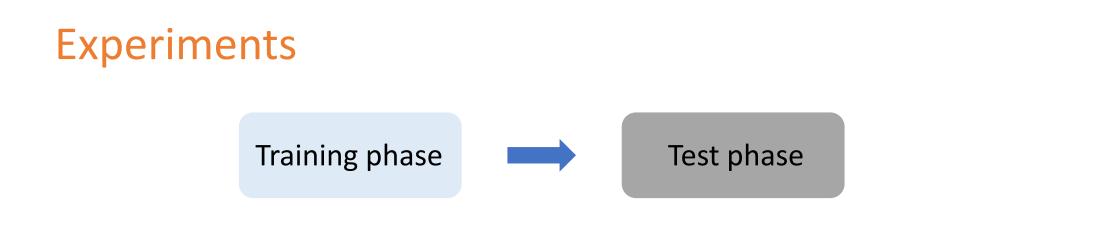
b. Please edit the review

Your guess was incorrect! The AI system had initially predicted fake but you guessed genuine.



Research Questions

- Which attribution techniques improve humans' ability to guess the model output, or edit the input examples to lower the model confidence?
- Whether the interactive environment with query access to the models makes it possible to distinguish the relative value of different attributions?



Participants first read the input example, and are challenged to guess the model prediction

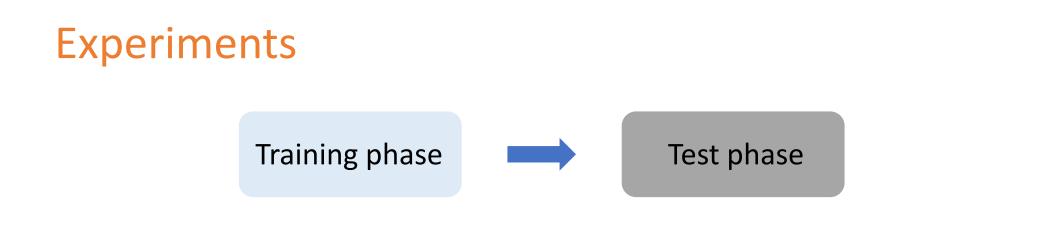
a. Can you guess the AI system outcome?

Determine if the review below is predicted genuine or fake by the AI system (Can only select once)

○ genuine○ fake

Don't stay here! My family and I stayed here for a weekend trip. The staff were rude and acted like we were bothering them. The rooms looked nice in photographs but when we got there our room looked like it hadn't been dusted in ages. Overall bad service and not worth the money.

Input Review

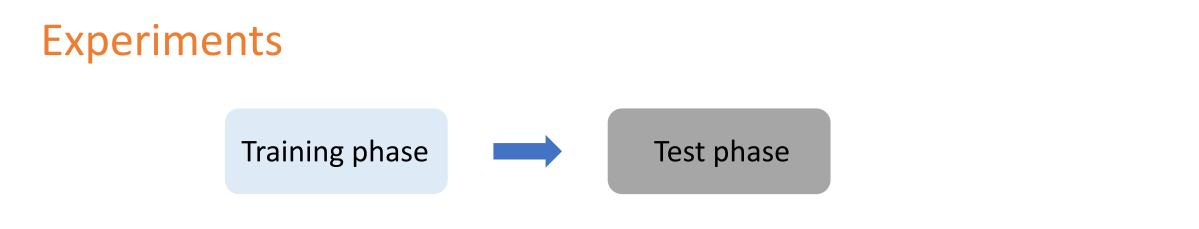


Then participants see the model output, model confidence and an explanation

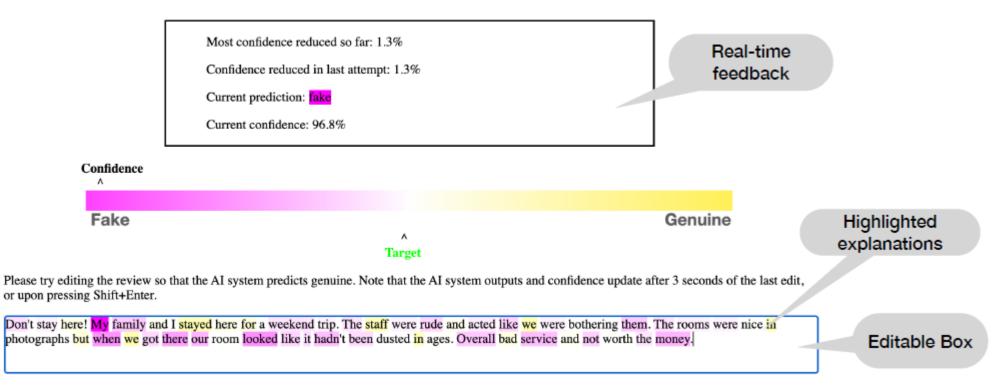
Your guess was incorrect! The AI system had initially predicted fake but you guessed genuine.

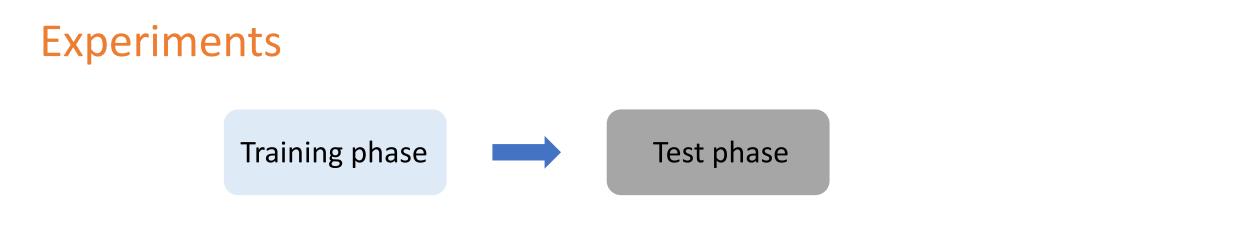
Most confidence reduced so far: 1.3%
Confidence reduced in last attempt: 1.3%
Current prediction: fake
Current confidence: 96.8%

Don't stay here! My family and I stayed here for a weekend trip. The staff were rude and acted like we were bothering them. The rooms were nice in photographs but when we got there our room looked like it hadn't been dusted in ages. Overall bad service and not worth the money.

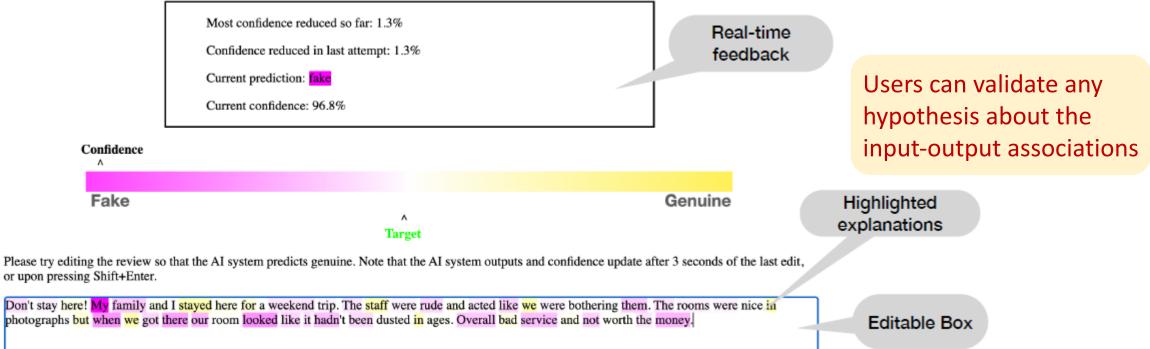


Prompt participants to edit the input text with a goal to lower the confidence of the model prediction





Prompt participants to edit the input text with a goal to lower the confidence of the model prediction



- Similar to the training phase
- Explanations are not available during testing

Eliminate concerns that the explanations might trivially leak the output

• Iterative training and test

two training examples + one test example

Question?

- Task: distinguishing between fake and real hotel reviews [Ott et al., 2011]
- Machine learning models perform much better than humans
- Models may exploit subtle, unknown and possibly counter-intuitive associations to drive prediction

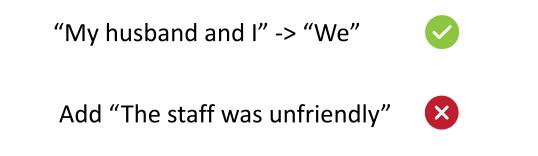
Model	Accuracy
Human Accuracy (Ott et al. 2011)	$\approx 60\%$
Logistic Regression	87.8%
BERT	89.8%

- Task: distinguishing between fake and real hotel reviews [Ott et al., 2011]
- Machine learning models perform much better than humans
- Models may exploit subtle, unknown and possibly counter-intuitive associations to drive prediction

Model	Accuracy
Human Accuracy (Ott et al. 2011)	$\approx 60\%$
Logistic Regression	87.8%
BERT	89.8%

Explanations help humans in understanding the input-output associations that models exploit?

- What are permissible edits?
 - Participants cannot alter the staying experience conveyed through the hotel review
 - If the review is positive, negative or mixed, then the edited version should maintain that stance
 - Participants are allowed to paraphrase and can remove or change information not relevant to the experience about the hotel



- Model and explanations
 - Logistic regression

Explanations: feature coefficients of unigram features

- BERT

```
Local explanations: LIME, IG
```

Global explanations:

Linear *student* model ≈ BERT feature coefficients

Do explanations help humans simulate models?

Investigate if the query access to the model's predictions and explanations during the training phase enables participants to understand the models sufficiently to simulate its output on unseen test examples

Do explanations help humans simulate models?

Investigate if the query access to the model's predictions and explanations during the training phase enables participants to understand the models sufficiently to simulate its output on unseen test examples

No evidence of improved simulatability

	Model	Treatments	Simulation Accuracy	Phase	Examples flipped (Percentage)	Avg. Confidence Reduced
	Logistic	Control	54.5 [51.0, 58.0]	Train Test	8.2 [5.4, 11.6] 15.0 [10.8, 19.4]	8.0 [7.0, 9.0] 5.9 [4.3, 7.8]
	Regression	Feature coefficients	53.1 [50.0, 57.0]	Train Test	36.7 [24.8 , 49.3] 16.0 [10.8, 21.6]	21.3 [19.5, 23.1] 8.9 [7.2, 10.6]
No expla	anations	Control	57.1 [54.0, 61.0]	Train Test	15.0 [11.6, 18.8] 12.4 [7.6, 18.1]	10.7 [8.6, 12.8] 9.2 [6.6, 11.9]
		LIME	56.4 [53.0, 60.0]	Train Test	14.4 [10.5, 19.5] 7.7 [4.4, 11.3]	10.2 [8.2, 12.3] 6.1 [4.1, 8.2]
	BERT	Integrated gradients	56.6 [54.0, 60.0]	Train Test	23.6 [19.4 , 28.0] 13.6 [8.2, 19.3]	16.5 [14.0, 19.2] 10.4 [7.7, 13.3]
		Feature coefficients (from a linear student)	60215/06401	Train Test	32.2 [27.1, 37.3] 21.3 [15.7, 27.4]	22.6 [19.7, 25.6] 14.9 [11.6, 18.4]
		+ global cues (from a linear student)	55.7 [51.0, 60.0]	Train Test	40.6 [32.0, 49.6] 31.6 [23.2, 40.8]	29.9 [26.8, 33.0] 23.6 [19.7, 27.6]

None of the explanations help improve simulation accuracy

Do explanations help humans perform edits that reduce the model confidence?

Examine if participants gain sufficient understanding during the training phase to perform edits that cause the models to lower the confidence towards the originally predicted class

Do explanations help humans perform edits that reduce the model confidence?

Examine if participants gain sufficient understanding during the training phase to perform edits that cause the models to lower the confidence towards the originally predicted class

Model	Treatments	Simulation Accuracy	Phase	Examples flipped (Percentage)	Avg. Confidence Reduced
	Control	54.5 [51.0, 58.0]	Train	8.2 [5.4, 11.6]	8.0 [7.0, 9.0]
Logistic			Test	15.0 [10.8, 19.4]	5.9 [4.3, 7.8]
Regression	Feature coefficients 5	53.1 [50.0, 57.0]	Train	36.7 [24.8, 49.3]	21.3 [19.5, 23.1]
		55.1 [50.0, 57.0]	Test	16.0 [10.8, 21.6]	8.9 [7.2, 10.6]
8	Control	57.1 [54.0, 61.0]	Train	15.0 [11.6, 18.8]	10.7 [8.6, 12.8]
			Test	12.4 [7.6, 18.1]	9.2 [6.6, 11.9]
	LIME	56.4 [53.0, 60.0]	Train	14.4 [10.5, 19.5]	10.2 [8.2, 12.3]
			Test	7.7 [4.4, 11.3]	6.1 [4.1, 8.2]
BERT	Integrated gradients	56.6 [54.0, 60.0]	Train	23.6 [19.4, 28.0]	16.5 [14.0, 19.2]
			Test	13.6 [8.2, 19.3]	10.4 [7.7, 13.3]
	Feature coefficients (from a linear student)	60.5 [57.0, 64.0]	Train	32.2 [27.1, 37.3]	22.6 [19.7, 25.6]
			Test	21.3 [15.7, 27.4]	14.9 [11.6, 18.4]
	+ global cues	55.7 [51.0, 60.0]	Train	40.6 [32.0, 49.6]	29.9 [26.8, 33.0]
	(from a linear student)		Test	31.6 [23.2, 40.8]	23.6 [19.7, 27.6]

Logistic regression coefficient weights help participants reduce the model confidence

Do explanations help humans perform edits that reduce the model confidence?

Examine if participants gain sufficient understanding during the training phase to perform edits that cause the models to lower the confidence towards the originally predicted class

Model	Treatments	Simulation Accuracy	Phase	Examples flipped (Percentage)	Avg. Confidence Reduced
Logistic Regression	Control	54.5 [51.0, 58.0]	Train Test	8.2 [5.4, 11.6] 15.0 [10.8, 19.4]	8.0 [7.0, 9.0] 5.9 [4.3, 7.8]
	Feature coefficients	53.1 [50.0, 57.0]	Train Test	36.7 [24.8 , 49.3] 16.0 [10.8, 21.6]	21.3 [19.5, 23.1] 8.9 [7.2, 10.6]
BERT	Control	57.1 [54.0, 61.0]	Train Test	15.0 [11.6, 18.8] 12.4 [7.6, 18.1]	10.7 [8.6, 12.8] 9.2 [6.6, 11.9]
	LIME	56.4 [53.0, 60.0]	Train Test	14.4 [10.5, 19.5] 7.7 [4.4, 11.3]	10.2 [8.2, 12.3] 6.1 [4.1, 8.2]
	Integrated gradients	56.6 [54.0, 60.0]	Train Test	23.6 [19.4 , 28.0] 13.6 [8.2, 19.3]	16.5 [14.0, 19.2] 10.4 [7.7, 13.3]
	Feature coefficients (from a linear student)	60.5 [57.0, 64.0] 55.7 [51.0, 60.0]	Train Test	32.2 [27.1, 37.3] 21.3 [15.7, 27.4]	22.6 [19.7, 25.6] 14.9 [11.6, 18.4]
	+ global cues (from a linear student)		Train Test	40.6 [32.0, 49.6] 31.6 [23.2, 40.8]	29.9 [26.8, 33.0] 23.6 [19.7, 27.6]

During the training phase, users are able to flip more predictions, however, this ability does not transfer to the test phase

Do explanations help humans perform edits that reduce the model confidence?

Examine if participants gain sufficient understanding during the training phase to perform edits that cause the models to lower the confidence towards the originally predicted class

Model	Treatments	Simulation Accuracy	Phase	Examples flipped (Percentage)	Avg. Confidence Reduced
Logistic Regression	Control	54.5 [51.0, 58.0]	Train Test	8.2 [5.4, 11.6] 15.0 [10.8, 19.4]	8.0 [7.0, 9.0] 5.9 [4.3, 7.8]
	Feature coefficients 53.1 [50.0, 57.0]	53.1 [50.0, 57.0]	Train	36.7 [24.8, 49.3]	21.3 [19.5, 23.1]
×.			Test Train	16.0 [10.8, 21.6] 15.0 [11.6, 18.8]	8.9 [7.2, 10.6]
BERT	Control	57.1 [54.0, 61.0]	Test	12.4 [7.6, 18.1]	9.2 [6.6, 11.9]
	LIME	56.4 [53.0, 60.0]	Train Test	14.4 [10.5, 19.5] 7.7 [4.4, 11.3]	10.2 [8.2, 12.3] 6.1 [4.1, 8.2]
	Integrated gradients	56.6 [54.0, 60.0]	Train Test	23.6 [19.4, 28.0] 13.6 [8.2, 19.3]	16.5 [14.0 , 19.2] 10.4 [7.7, 13.3]
	Feature coefficients (from a linear student)	60.5 [57.0, 64.0]	Train Test	32.2 [27.1, 37.3] 21.3 [15.7, 27.4]	22.6 [19.7, 25.6] 14.9 [11.6, 18.4]
	+ global cues (from a linear student)	55.7 [51.0, 60.0]	Train Test	40.6 [32.0, 49.6] 31.6 [23.2, 40.8]	14.9 [11.0, 18.4] 29.9 [26.8, 33.0] 23.6 [19.7, 27.6]

For the BERT model, neither LIME nor IG help participants flip more predictions or reduce confidence at the test phase

Do explanations help humans perform edits that reduce the model confidence?

Examine if participants gain sufficient understanding during the training phase to perform edits that cause the models to lower the confidence towards the originally predicted class

Model	Treatments	Simulation Accuracy	Phase	Examples flipped (Percentage)	Avg. Confidence Reduced
Logistic Regression	Control	54.5 [51.0, 58.0]	Train Test	8.2 [5.4, 11.6] 15.0 [10.8, 19.4]	8.0 [7.0, 9.0] 5.9 [4.3, 7.8]
	Feature coefficients	53.1 [50.0, 57.0]	Train Test	36.7 [24.8, 49.3] 16.0 [10.8, 21.6]	21.3 [19.5, 23.1] 8.9 [7.2, 10.6]
BERT	Control	57.1 [54.0, 61.0]	Train Test	15.0 [11.6, 18.8] 12.4 [7.6, 18.1]	10.7 [8.6, 12.8] 9.2 [6.6, 11.9]
	LIME	56.4 [53.0, 60.0]	Train Test	14.4 [10.5, 19.5] 7.7 [4.4, 11.3]	10.2 [8.2, 12.3] 6.1 [4.1, 8.2]
	Integrated gradients	56.6 [54.0, 60.0]	Train Test	23.6 [19.4 , 28.0] 13.6 [8.2, 19.3]	16.5 [14.0, 19.2] 10.4 [7.7, 13.3]
	Feature coefficients (from a linear student)	60.5 [57.0, 64.0]	Train Test	32.2 [27.1, 37.3] 21.3 [15.7, 27.4]	22.6 [19.7, 25.6] 14.9 [11.6, 18.4]
	+ global cues (from a linear student)	55.7 [51.0, 60.0]	Train Test	40.6 [32.0, 49.6] 31.6 [23.2, 40.8]	29.9 [26.8, 33.0] 23.6 [19.7, 27.6]

Global interpretations from the linear student model help participants flip more predictions and reduce confidence

Do participants edit tokens highlighted as explanations? Are their edits effective?

- Monitor whether participants are paying attention to the explanations, specifically by measuring how they respond to highlighted words
- Record the fraction of times edits are performed on a word that is among the top-20% of highlighted words in a given input text

Do participants edit tokens highlighted as explanations? Are their edits effective?

- Monitor whether participants are paying attention to the explanations, specifically by measuring how they respond to highlighted words
- Record the fraction of times edits are performed on a word that is among the top-20% of highlighted words in a given input text

Yes, participants edit the highlighted words significantly more often

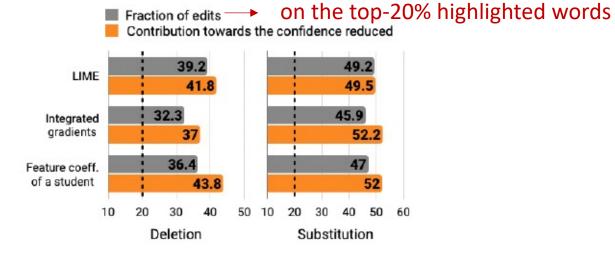
Do participants edit tokens highlighted as explanations? Are their edits effective?

- Monitor whether participants are paying attention to the explanations, specifically by measuring how they respond to highlighted words
- Record the fraction of times edits are performed on a word that is among the top-20% of highlighted words in a given input text

Yes, participants edit the highlighted words significantly more often

The edits on the top-20% highlighted words are effective in reducing model confidence?

- Yes, the edits on highlighted words are more effective
- IG and global interpretations are more effective than LIME



Discussion

- Separating learning and predicting phase is too challenging for humans to understand model prediction behavior
- The number of examples for learning is limited

Question?

Reference

- Jacovi, Alon, and Yoav Goldberg. "Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness?." *arXiv preprint arXiv:2004.03685* (2020).
- Hase, Peter, and Mohit Bansal. "Evaluating explainable AI: Which algorithmic explanations help users predict model behavior?." *arXiv preprint arXiv:2005.01831* (2020).
- Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable machine learning." *arXiv* preprint arXiv:1702.08608 (2017).
- Arora, Siddhant, et al. "Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations." *arXiv preprint arXiv:2112.09669* (2021).
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-precision model agnostic explanations. In AAAI Conference on Artificial Intelligence.