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Rationalized Neural Networks
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What is the difference?  

Explaining a model from the post-hoc manner Improving a model’s intrinsic interpretability

Model Model

freeze
train

• Inference stage • Training stage
• Explain model predictions
• No change on model 

decision making

• Make model prediction 
behavior more interpretable

• No (or minor) change on model 
architecture

Building Interpretable Neural Network Models

Model
Self-interpretable

Rationalized Neural Networks

input

Extractor

rationale output

Predictor
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Rationalized Neural Networks

• Rationalizing Neural Predictions

• FRESH
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Rationalizing Neural Predictions

Tao Lei, Regina Barzilay and Tommi Jaakkola

(EMNLP, 2016)
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Rationalizing Neural Predictions

• Rationales: interpretable justifications for model predictions

• Learning problem

- Prediction

- Rationale generation
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Rationalizing Neural Predictions

• Rationales: interpretable justifications for model predictions

• Learning problem

- Prediction

- Rationale generation

(subsets of words extracted from the input)

• short and coherent pieces of text 
(e.g., phrases)

• suffice for prediction
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Extractive Rationale Generation

𝒙 = 𝑥!, 𝑥", ⋯ , 𝑥#

A sequence of words generator
𝑔𝑒𝑛(𝒙)

Rationale encoder
𝑒𝑛𝑐(𝑔𝑒𝑛 𝒙 )

Prediction

short and 
sufficient

≈ 𝑒𝑛𝑐(𝒙)
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Extractive Rationale Generation

𝒙 = 𝑥!, 𝑥", ⋯ , 𝑥#

A sequence of words

𝑔𝑒𝑛(𝒙)

Rationale encoder
𝑒𝑛𝑐(𝑔𝑒𝑛 𝒙 )

Prediction

short and 
sufficient

≈ 𝑒𝑛𝑐(𝒙)

𝑔𝑒𝑛(-): a tagging model

0,1,⋯ , 0 #

generator
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Extractive Rationale Generation

𝒙 = 𝑥!, 𝑥", ⋯ , 𝑥#

A sequence of words

𝑔𝑒𝑛(𝒙)

Rationale encoder
𝑒𝑛𝑐(𝑔𝑒𝑛 𝒙 )

Prediction

short and 
sufficient

≈ 𝑒𝑛𝑐(𝒙)

𝑔𝑒𝑛(-): a tagging model

0,1,⋯ , 0 #

generator Train 
jointly

No additional 
supervision
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Encoder and Generator

Encoder 𝒆𝒏𝒄(-)

3𝑦 = 𝑒𝑛𝑐(𝒙)

ℒ 𝒙, 𝑦 = 3𝑦 − 𝑦 "
" = 𝑒𝑛𝑐(𝒙) − 𝑦 "

"
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Encoder and Generator

Generator 𝒈𝒆𝒏(-)

𝒛~𝑔𝑒𝑛 𝒙 ≡ 𝑝 𝒛 𝒙

𝑧$ ∈ 0, 1𝑔𝑒𝑛 𝒙 𝒛 = 𝑧!, 𝑧", ⋯ , 𝑧#
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Encoder and Generator

Generator 𝒈𝒆𝒏(-)

𝒛~𝑔𝑒𝑛 𝒙 ≡ 𝑝 𝒛 𝒙

𝑧$ ∈ 0, 1𝑔𝑒𝑛 𝒙 𝒛 = 𝑧!, 𝑧", ⋯ , 𝑧#

𝑝 𝒛 𝒙 =>
$%!

#

𝑝 𝑧$ 𝒙 (independent selection)
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Encoder and Generator

Generator 𝒈𝒆𝒏(-)

𝒛~𝑔𝑒𝑛 𝒙 ≡ 𝑝 𝒛 𝒙

𝑧$ ∈ 0, 1𝑔𝑒𝑛 𝒙 𝒛 = 𝑧!, 𝑧", ⋯ , 𝑧#

𝑝 𝒛 𝒙 =>
$%!

#

𝑝 𝑧$ 𝒙 (independent selection)

𝑝 𝒛 𝒙 =>
$%!

#

𝑝 𝑧$ 𝒙, 𝑧!⋯ , 𝑧$&𝟏 (recurrent selection)

Or
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Encoder and Generator

Generator 𝒈𝒆𝒏(-)

𝒛~𝑔𝑒𝑛 𝒙 ≡ 𝑝 𝒛 𝒙

𝑧$ ∈ 0, 1𝑔𝑒𝑛 𝒙 𝒛 = 𝑧!, 𝑧", ⋯ , 𝑧#

𝑝 𝒛 𝒙 =>
$%!

#

𝑝 𝑧$ 𝒙 (independent selection)

𝑝 𝒛 𝒙 =>
$%!

#

𝑝 𝑧$ 𝒙, 𝑧!⋯ , 𝑧$&𝟏 (recurrent selection)

Or

The component distributions are 
modeled via a shared bi-directional 
recurrent neural network
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Encoder and Generator

Joint objective

A rationale 𝒛, 𝒙 corresponds to the selected words, i.e., 𝑥$ 𝑧$ = 1

The rationale should suffice as a replacement for the input text:

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"
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Encoder and Generator

Joint objective

A rationale 𝒛, 𝒙 corresponds to the selected words, i.e., 𝑥$ 𝑧$ = 1

The rationale should suffice as a replacement for the input text:

The loss function depends directly on 
the encoder but only indirectly on the 
generator via the sampled selection

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"



17

Encoder and Generator

Joint objective

A rationale 𝒛, 𝒙 corresponds to the selected words, i.e., 𝑥$ 𝑧$ = 1

The rationale should suffice as a replacement for the input text:

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"

The rationale should be short and coherent:
(A few and consecutive words, e.g., phrases)

Ω 𝒛 = 𝜆! 𝒛 + 𝜆"B
$

𝑧$ − 𝑧$&!

(Encourage the continuity 
of selections)

(Control the number 
of selections)
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Encoder and Generator

Joint objective

A rationale 𝒛, 𝒙 corresponds to the selected words, i.e., 𝑥$ 𝑧$ = 1

The rationale should suffice as a replacement for the input text:

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"

The rationale should be short and coherent:
(A few and consecutive words, e.g., phrases)

Ω 𝒛 = 𝜆! 𝒛 + 𝜆"B
$

𝑧$ − 𝑧$&!

Objective
ℒ 𝒛, 𝒙, 𝑦 + Ω 𝒛
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Question?
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Experiments

Multi-aspect Sentiment Analysis

Dataset: BeerAdvocate review (McAuley et al., 2012)

- 1.5 million reviews written by the website users
- the reviews are naturally multi-aspect
- each of them contains multiple sentences
- describing the overall impression 
- one particular aspect of a beer (appearance, smell, palate, taste)
- an overall score ([0, 1]) and the score for each aspect
- Sentence-level annotations: indicating what aspect a sentence covers
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Experiments

Multi-aspect Sentiment Analysis

Assessing different neural encoder architectures

(recurrent convolutional 
neural networks)
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Experiments

Multi-aspect Sentiment Analysis

Assessing different neural encoder architectures

(recurrent convolutional 
neural networks)

The generator is also 
constructed with RCNN units
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Experiments

Multi-aspect Sentiment Analysis

Prediction performance
M

SE

Percentage of text

Sacrifice of performance
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Experiments

Multi-aspect Sentiment Analysis

Rationale selection
Pr

ec
isi

on

Percentage of text

SVM successively extracts unigram
or bigram with the highest feature

The attention-based model selects 
words based on their attention weights
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Experiments

Multi-aspect Sentiment Analysis

Rationale selection
Pr

ec
isi

on

Percentage of text

ü The encoder-generator 
network extracts text pieces 
describing the target aspect 
with high precision
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Experiments

Multi-aspect Sentiment Analysis

Rationale selection (appearance, smell, palate)
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Question?
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Rationalized Neural Networks

• Rationalizing Neural Predictions

• FRESH
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Learning to Faithfully Rationalize by Construction

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, Byron C. Wallace

(ACL, 2020)
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Key Property

Faithfulness: an explanation provided by a model is faithful if it reflects the 
information actually used by said model to come to a disposition

(Lipton, 2018)
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Problem

(Lei et al., 2016)

input

Extractor

rationale output

Predictor

The difficulty of training the two components jointly under only 
instance-level supervision
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Problem

(Lei et al., 2016)

input

Extractor

rationale output

Predictor

The difficulty of training the two components jointly under only 
instance-level supervision

No supervision 
(e.g., token labels)

The discrete selection over 
input tokens complicates
training, leading to high 
variance and requiring careful 
hyperparameter tuning
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FRESH
Faithful Rationale Extraction from Saliency tHresholding (FRESH)

input

Extractor

rationale output

Predictor

Train separately
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FRESH
Faithful Rationale Extraction from Saliency tHresholding (FRESH)

input

Extractor

rationale output

Predictor

Train separately

FRESH is faithful by construction: 
the snippet that is ultimately used 
to inform a prediction can be 
presented as a faithful explanation
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FRESH
Faithful Rationale Extraction from Saliency tHresholding (FRESH)

input

Extractor

rationale output

Predictor

Train separately

FRESH is plausible: the extracted 
rationales are intuitive to humans
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FRESH
End-to-End Rationale Extraction

𝑛 input documents 𝑥!, 𝑥", ⋯ , 𝑥( Assigned labels 𝑦!, 𝑦", ⋯ , 𝑦(

Text classification task
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FRESH
End-to-End Rationale Extraction

𝑛 input documents 𝑥!, 𝑥", ⋯ , 𝑥( Assigned labels 𝑦!, 𝑦", ⋯ , 𝑦(

Text classification task

Generator Encoder
𝑥)

𝑧)~𝑔𝑒𝑛(𝑥))
C𝑦 = 𝑒𝑛𝑐(𝑥), 𝑧))
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FRESH
End-to-End Rationale Extraction

𝑛 input documents 𝑥!, 𝑥", ⋯ , 𝑥( Assigned labels 𝑦!, 𝑦", ⋯ , 𝑦(

Text classification task

Generator Encoder
𝑥)

𝑧)~𝑔𝑒𝑛(𝑥))
C𝑦 = 𝑒𝑛𝑐(𝑥), 𝑧))

Objective

min
*!"#,*$!"

∑)%!( 𝐸,%~./((1%)ℒ 𝑒𝑛𝑐 𝑥), 𝑧) , 𝑦)
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FRESH
End-to-End Rationale Extraction

𝑛 input documents 𝑥!, 𝑥", ⋯ , 𝑥( Assigned labels 𝑦!, 𝑦", ⋯ , 𝑦(

Text classification task

Generator Encoder
𝑥)

𝑧)~𝑔𝑒𝑛(𝑥))
C𝑦 = 𝑒𝑛𝑐(𝑥), 𝑧))

Objective

min
*!"#,*$!"

∑)%!( 𝐸,%~./((1%)ℒ 𝑒𝑛𝑐 𝑥), 𝑧) , 𝑦)
Marginalizing over all 
possible rationales 𝑧 causes 
difficulty in optimization
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FRESH
End-to-End Rationale Extraction

𝑛 input documents 𝑥!, 𝑥", ⋯ , 𝑥( Assigned labels 𝑦!, 𝑦", ⋯ , 𝑦(

Text classification task

Generator Encoder
𝑥)

𝑧)~𝑔𝑒𝑛(𝑥))
C𝑦 = 𝑒𝑛𝑐(𝑥), 𝑧))

Objective

min
*!"#,*$!"

∑)%!( 𝐸,%~./((1%)ℒ 𝑒𝑛𝑐 𝑥), 𝑧) , 𝑦)

Conciseness and contiguity  Ω 𝒛 = 𝜆!𝑚𝑎𝑥 0,
𝑧
𝐿 − 𝑑 + 𝜆"B

$

𝑧$ − 𝑧$&!
𝐿 − 1
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Question?
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FRESH
Three independent components

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)
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FRESH
Three independent components

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

• Train supp end-to-end to predict 𝑦
• Use its outputs only to extract continuous 

feature importance scores
(post-hoc explanations)
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FRESH
Three independent components

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

• Use the importance 
scores to train ext
(e.g., treating the top 
k tokens as the tartget
rationale)

• Extract snippets



45

FRESH
Three independent components

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

• Train pred on 
the extracted 
snippets
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FRESH
Implementation

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

BERT encoder

Attention/gradient-based 
importance scores

Discretizing Soft Scores
• Contiguous: select the span of length 

k with the highest total score
• Top-k (non-contiguous): select top-k 

individual tokens
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FRESH
Implementation

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

BERT encoder

Attention/gradient-based 
importance scores

discretization heuristics
or

BERT for sequencing 
tagging
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FRESH
Implementation

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

BERT encoder

Attention/gradient-based 
importance scores

discretization heuristics
or

BERT for sequencing 
tagging

BERT for classification
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FRESH
Implementation

Support model 
(supp)

Extractor model 
(ext)

Classifier
(pred)

BERT encoder

Attention/gradient-based 
importance scores

discretization heuristics
or

BERT for sequencing 
tagging

BERT for classification

Leverage post-hoc explanations 
to guide rationale extraction
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Question?
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Experiments

Empirical results (Lei et al., 2016)

• Hyperparameter sensitivity

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"

Ω 𝒛 = 𝜆! 𝒛 + 𝜆"B
$

𝑧$ − 𝑧$&!

• Model performance is sensitive 
to hyperparameters (𝜆!, 𝜆")

• Hyperparameter search is time-
consuming
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Experiments

Empirical results (Lei et al., 2016)

• Hyperparameter sensitivity

ℒ 𝒛, 𝒙, 𝑦 = 𝑒𝑛𝑐(𝒛, 𝒙) − 𝑦 "
"

Ω 𝒛 = 𝜆! 𝒛 + 𝜆"B
$

𝑧$ − 𝑧$&!

• Model performance is sensitive 
to hyperparameters (𝜆!, 𝜆")

• Hyperparameter search is time-
consuming

• High variance in performance

Performance varies across different random seeds
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Experiments

Prediction performance

• Outperform baseline methods

• Performance drops compared with the baseline with full text as input
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Experiments

Varying rationale length

The effectiveness of FRESH even in constrained settings
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Experiments

Incorporating human rationale supervision

• Varying amounts of rationale-level supervision (0, 20%, 50%, 100%)

• Introducing an additional binary cross entropy term into the objective

• Overall, mixing in rationale-level supervision can improve performance (not much)



56

Human Analysis

Sufficiency: Can a human predict the correct label given only the rationale? 

Readability and understandability: test the user’s preference for a certain style of 
rationale beyond their ability to predict the correct label 
(one hypothesis is that humans will prefer contiguous to non-contiguous rationales)



57

Human Analysis

Sufficiency: Can a human predict the correct label given only the rationale? 

Readability and understandability: test the user’s preference for a certain style of 
rationale beyond their ability to predict the correct label 
(one hypothesis is that humans will prefer contiguous to non-contiguous rationales)

FRESH rationales (both contiguous and noncontiguous)

Baselines:
- Human rationales
- Randomly selected “rationales” of length k
- Rationales from Lei et al., 2016 models
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Human Analysis

Rationales
- Classify examples
- Rate their confidence (1-4)
- Rate how easy the text is to read 

and understand (1-5)
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Human Analysis

Rationales
- Classify examples
- Rate their confidence (1-4)
- Rate how easy the text is to read 

and understand (1-5)

• Humans achieve the best 
performance on FRESH rationales

• Humans exhibit a strong preference 
for contiguous rationales
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Question?
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