

CS 4501/6501 Interpretable Machine Learning

Introduction

Hanjie Chen, Yangfeng Ji Department of Computer Science University of Virginia {hc9mx, yangfeng}@virginia.edu

Interpretable Machine Learning

Video source: https://www.youtube.com/watch?v=OZJ1IgSgP9E

Neural Networks

Health care

Autopilot

Computer Vision

Object recognition

Natural Language Processing

n Sentiment analysis

Dialog system

Neural Networks

What is the model learning?

How does the model make a prediction?

Can we trust the model?

How to make the model better?

Lack of interpretability...

Black-box models are dangerous...

Unexpected Failures

Tesla hit a parked police car while using Autopilot

Risks of AI in health care

Bias and Unfairness

- Data set: 67% of people cooking are women
- Algorithm predicts: 84% of people cooking are women

Machine Learning can amplify bias.

Higher error rate on darker female

Vulnerability to Adversarial Attacks

Interpretable Machine Learning

Website: <u>https://uvanlp.org/iml-2022/</u>

- Website: <u>https://uvanlp.org/iml-2022/</u>
- Background
 - Machine learning models: remarkable performance, lack of interpretability
 - Interpretable machine learning: building trustworthy and reliable models

- Website: <u>https://uvanlp.org/iml-2022/</u>
- Background
 - Machine learning models: remarkable performance, lack of interpretability
 - Interpretable machine learning: building trustworthy and reliable models

Goal

- Getting familiar with the emerging problem in machine learning
- Learning recent advances in interpretable and explainable AI

> Instructors

Hanjie Chen

- PhD student (4th year)
- Advisor: Prof. Yangfeng Ji
- Research: Natural Language Processing, Interpretable Machine Learning
- UVA Engineering Graduate Teaching Intern (GTI)
- Website: https://www.cs.virginia.edu/~hc9mx/
- Interests: piano, swimming, yoga, hiking...
- Fun fact: I am living with two cutest cats

> Instructors

Yangfeng Ji

- Assistant professor
- Research: Natural Language Processing, Text Understanding and Generation
- Website: https://yangfengji.net/
- Lead the Information and Language Processing (ILP) Lab <u>https://uvanlp.org/</u>

≻ TA

Wanyu Du

- PhD student (2nd year)
- Research: Natural Language Processing, Text Generation, Conversation Modeling
- Website: <u>https://wyu-du.github.io/</u>

➢ Format

- Hybrid: lectures will be given in person at Rice Hall 340, Zoom online (join via Collab)
- Lectures will be recorded and uploaded to Collab

Format

- Hybrid: lectures will be given in person at Rice Hall 340, Zoom online (join via Collab)
- Lectures will be recorded and uploaded to Collab
- From Week 4 (Feb. 8, 10): one lecture + one discussion per week

Format

- Hybrid: lectures will be given in person at Rice Hall 340, Zoom online (join via Collab)
- Lectures will be recorded and uploaded to Collab
- From Week 4 (Feb. 8, 10): one lecture + one discussion per week
- <u>Campusewire</u> (online QA, connection, discussion)
- Office hours:

Name	Time	Location
Hanjie Chen	Thursday 2:00-3:00 PM	Zoom
Yangfeng Ji	TBD	TBD
Wanyu Du	TBD	TBD

- Prerequisites
 - Proficiency in Python
 - Basic Calculus and Linear Algebra
 - Basic Probability and Statistics
 - Foundations of Machine Learning

- Prerequisites
 - Proficiency in Python
 - Basic Calculus and Linear Algebra
 - Basic Probability and Statistics
 - Foundations of Machine Learning

Note: This course would not cover basic machine learning (please take CS 4774/6316 Machine Learning instead)

Assignments

Two evaluation schemes

- Application-oriented (for undergraduates)
 - 3 programming assignments (3*15%=45%)
 - 1 paper presentation (15%)
 - 10 paper summaries (10%)
 - Final project (20%)
 - In-class discussion + attendance (7% + 3%=10%)
- Research-oriented (for graduates)
 - 2 programming assignments (2*15%=30%) (choose any 2 from 3 assignments)
 - 2 paper presentations (2*15%=30%)
 - 10 paper summaries (10%)
 - Final project (20%)
 - In-class discussion + attendance (7% + 3%=10%)

Assignments

Two evaluation schemes

- Application-oriented (for undergraduates)
 - 3 programming assignments (3*15%=45%)
 - 1 paper presentation (15%)
 - 10 paper summaries (10%)
 - Final project (20%)
 - In-class discussion + attendance (7% + 3%=10%)
- Research-oriented (for graduates)
 - 2 programming assignments (2*15%=30%) (choose any 2 from 3 assignments)
 - 2 paper presentations (2*15%=30%)
 - 10 paper summaries (10%)
 - Final project (20%)
 - In-class discussion + attendance (7% + 3%=10%)

> Assignments

Programming assignment

Implementation of algorithms discussed in class, coding with Python

> Assignments

Programming assignment

Implementation of algorithms discussed in class, coding with Python

Paper presentation

- Start from Week 4 (on Thursday)
- 2/3 papers per class, 35/25 mins (25/20 mins presentation + 10/5 mins QA) per paper
- 2 students per paper

> Assignments

Programming project

Implementation of algorithms discussed in class, coding with Python

Paper presentation

- Start from Week 4 (on Thursday)
- 2/3 papers per class, 35/25 mins (25/20 mins presentation + 10/5 mins QA) per paper
- 2 students per paper
- Select one paper from the reading list (under the week you are going to present)

https://docs.google.com/spreadsheets/d/1IVIYW_4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=1712395903

• Choose different topics for two presentations

> Assignments

Programming project

Implementation of algorithms discussed in class, coding with Python

Paper presentation

- Start from Week 4 (on Thursday)
- 2/3 papers per class, 35/25 mins (25/20 mins presentation + 10/5 mins QA) per paper
- 2 students per paper
- Select one paper from the reading list (under the week you are going to present)

https://docs.google.com/spreadsheets/d/1IVIYW_4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=1712395903

- Choose different topics for two presentations
- Sign up before Feb. 3rd

https://docs.google.com/spreadsheets/d/1IVIYW_4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=0

> Assignments

Paper presentation (Rubric)

- Introduction/Background (3')
- Research problem/Motivation(3')
- Methodology (3')
- Experimental results (3')
- Conclusion/Takeaway (3')

> Assignments

Paper summary

- Start from Week 4 (due on Tuesday)
- Submit one summary at most per week, 10 paper summaries in total

> Assignments

Paper summary

- Start from Week 4 (due on Tuesday)
- Submit one summary at most per week, 10 paper summaries in total
- Select one paper from the reading list (under the week you are going to submit)

https://docs.google.com/spreadsheets/d/1IVIYW_4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=1712395903

> Assignments

Paper summary

- Start from Week 4 (due on Tuesday)
- Submit one summary at most per week, 10 paper summaries in total
- Select one paper from the reading list (under the week you are going to submit)

https://docs.google.com/spreadsheets/d/1IVIYW 4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=1712395903

• Use the <u>template</u> to write a short summary (0.5-1 page)

Questions

- 1. Paper title
- 2. What is the research problem addressed in this paper?
- 3. What is the proposed method? How it can address the problem?
- 4. What are the main observations/conclusions from the experiments?

> Assignments

Final project

- Proposal (6%, due on Mar. 24)
- Final presentation (7%, due on May. 3)
- Final project report (7%, due on May. 6)
- 2-3 students per group
- Sign up before Mar. 24

https://docs.google.com/spreadsheets/d/1IVIYW_4rN2sMtR4lxstmyzDtKHX9sczSoysKl2JNb88/edit#gid=410460640

> Assignments

Final project

- Related to model interpretation/interpretability
- Implement interpretation methods to solve a real-world problem
- Explore the interpretability of a specific machine learning model
- Reproduce the results in a paper regarding interpretable ML published on top-tier AI conferences (AAAI, NeurIPS, ICLR, ICML, ACL, EMNLP, CVPR, ICCV...)

• ...

> Assignments

Final project

٠

...

- Related to model interpretation/interpretability
- Implement interpretation methods to solve a real-world problem
- Explore the interpretability of a specific machine learning model
- Reproduce the results in a paper regarding interpretable ML published on top-tier Al conferences (AAAI, NeurIPS, ICLR, ICML, ACL, EMNLP, CVPR, ICCV...)
 - Reproducing results in a paper is not easy. There are many factors that may be out of your control (e.g., hyperparameters, environment...)

> Assignments

Final project (Rubric-proposal)

- Introduction (2'): background/motivation, research problem
- Models and datasets (1')
- Proposed method (1')
- Experiments (2'): plan, evaluation criteria

> Assignments

Final project (Rubric-presentation/report)

- Introduction (2'): background/motivation, research problem
- Models and datasets (1')
- Proposed method (2'): a description of the proposed method, a justification about why you think the proposed method could work
- Experimental results (2'): observations, conclusions

> Assignments

In-class discussion

• Ask questions in QA session, leave questions in Zoom channel, post comments on Campuswire

> Assignments

In-class discussion

- Ask questions in QA session, leave questions in Zoom channel, post comments on Campuswire
- Remember to move all your questions/comments to Campuswire forum within 30 mins after the class

> Assignments

In-class discussion

- Ask questions in QA session, leave questions in Zoom channel, post comments on Campuswire
- Remember to move all your questions/comments to Campuswire forum within 30 mins after the class
- Commenting on one paper (no matter how many comments) would be counted once

> Assignments

In-class discussion

Number	Points
≥ 13	7
[11, 13)	6
[9, 11)	5
[7, 9)	4
[5, 7)	3
[3, 5)	2
[1, 3)	1
0	0

> Assignments

Attendance

- If you attend the class in person, please sign the table after class
- If you join in Zoom, we will count attendance at a random time during the class

Missing classes	Points
≤ 3	3
4	2
5	1
> 5	0

Late penalty

Homework submission will be accepted up to 48 hours late, with 20% deduction per 24 hours on the points as a penalty

Late time (hours)	Penalty
(0, 24]	20%
(24, 48]	40%

Late penalty

Homework submission will be accepted up to 48 hours late, with 20% deduction per 24 hours on the points as a penalty

Late time (hours)	Penalty
(0, 24]	20%
(24, 48]	40%

For example:

- Deadline: Feb. 8th, 11:59 PM
- Submission timestamp: Feb. 10th, 9:00 AM (≤ 48 hours)
- Original points of a homework: 10
- Actual points: 10 × (1 40%) = 6

Policy

> Late penalty

Note:

- It is usually better if students just turn in what they have in time
- It's the students' responsibility to double check their submission (We DO NOT accept any replacement if the deadline has passed over 48 hours, or we would treat it as a late submission if it is still acceptable)
- If a student submits one homework via multiple files/times, we will use the latest timestamp for deciding and calculating the late penalty

Policy

Collaboration

- Students should work on programming projects and paper summaries independently
- Discussions are encouraged, but copying or plagiarizing homework is NOT allowed
- In your submission, please list the names of your classmates who have discussions with you on that assignment
- Students are encouraged to work as a team on paper presentations and final projects
- Each team only needs to submit one report/presentation
- All team members will have the same points for each submission

Policy

> Note

- All assignments will be submitted at Collab
- Campuswire: in-class discussion, forming teammates, course

announcements, online QA, group discussion (with a chatroom)

Policy ≻ Grades

Point range	Letter grade
[98, 100]	A+
[94, 98)	А
[90, 94)	A-
[88, 90)	B+
[83, 88)	В
[80, 83)	B-
[74, 80)	C+
[67, 74)	С
[60, 67)	C-
[0, 60)	F

Da	ate	Торіс	Assignments/Deadlines
Week 1	: Jan. 20	Course overview	-
	Jan. 25	Introduction to interpretability	-
Week 2	Jan. 27	Interpretable generalized additive models (GAMs)	-
Week 3 Feb. 1 Feb. 3	Introduction to neural networks	-	
	Feb. 3	Introduction to neural networks	Sign up presentation form
Week 4	Feb. 8	Post-hoc explanations for black-box models: perturbation-based methods	Paper summary
	Feb. 10	Paper presentation	Programming project 1 out

C	Date	Торіс	Assignments/Deadlines
Week 5	Feb. 15	Post-hoc explanations for black-box models: gradient/attention-based methods	Paper summary
	Feb. 17	Paper presentation	-
Week 6	Feb. 22	Post-hoc explanations for black-box models: beyond feature-level	Paper summary
	Feb. 24	Paper presentation	Programming project 1 due Programming project 2 out
Week 7	Mar. 1	Improving neural network intrinsic interpretability	Paper summary
	Mar. 3	Paper presentation	-
Week 8		Spring Recess	

C	Date	Торіс	Assignments/Deadlines
Week 9	Mar. 15	Building interpretable neural network models	Paper summary
	Mar. 17	Paper presentation	Programming project 2 due Programming project 3 out
Week 10	Mar. 22	Rationalized neural networks	Paper summary
	Mar. 24	Paper presentation	Final project proposal, sign up the final project form
Week 11 Mar. 29 Mar. 31	Interpretation and human understanding	Paper summary	
	Mar. 31	Paper presentation	Programming project 3 due
Week 12	Apr. 5	Robust interpretations	Paper summary
	Apr. 7	Paper presentation	-

D	ate	Торіс	Assignments/Deadlines
Week 13	Apr. 12	Connections with model performance, robustness, fairness	Paper summary
	Apr. 14	Paper presentation	-
Week 14	Apr. 19	Paper presentation	Paper summary
	Apr. 21	Paper presentation	Paper summary
Week 15	Apr. 26	Paper presentation	Paper summary
	Apr. 28	Paper presentation	Paper summary
Week 16: May. 3		Final presentation	-

Question?