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Abstract

Neural language models show vulnerability to adversarial ex-
amples which are semantically similar to their original coun-
terparts with a few words replaced by their synonyms. A com-
mon way to improve model robustness is adversarial train-
ing which follows two steps—collecting adversarial exam-
ples by attacking a target model, and fine-tuning the model
on the augmented dataset with these adversarial examples.
The objective of traditional adversarial training is to make
a model produce the same correct predictions on an origi-
nal/adversarial example pair. However, the consistency be-
tween model decision-makings on two similar texts is ig-
nored. We argue that a robust model should behave con-
sistently on original/adversarial example pairs, that is mak-
ing the same predictions (what) based on the same reasons
(how) which can be reflected by consistent interpretations. In
this work, we propose a novel feature-level adversarial train-
ing method named FLAT. FLAT aims at improving model
robustness in terms of both predictions and interpretations.
FLAT incorporates variational word masks in neural net-
works to learn global word importance and play as a bottle-
neck teaching the model to make predictions based on impor-
tant words. FLAT explicitly shoots at the vulnerability prob-
lem caused by the mismatch between model understandings
on the replaced words and their synonyms in original/adver-
sarial example pairs by regularizing the corresponding global
word importance scores. Experiments show the effectiveness
of FLAT in improving the robustness with respect to both
predictions and interpretations of four neural network models
(LSTM, CNN, BERT, and DeBERTa) to two adversarial at-
tacks on four text classification tasks. The models trained via
FLAT also show better robustness than baseline models on
unforeseen adversarial examples across different attacks. 1

1 Introduction
Neural language models are vulnerable to adversarial exam-
ples generated by adding small perturbations to input texts
(Liang et al. 2017; Samanta and Mehta 2017; Alzantot et al.
2018). Adversarial examples can be crafted in several ways,
such as character typos (Gao et al. 2018; Li et al. 2018),
word substitutions (Alzantot et al. 2018; Ren et al. 2019; Jin
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Figure 1: Illustration of different model robustness with re-
spect to predictions and interpretations on (1) a POSITIVE
movie review and (2) a NEGATIVE movie review (Ori.), and
their adversarial counterparts (Adv.). Model B makes the
same correct predictions on Ori. and Adv. in (1), while the
discrepant interpretations reveal its vulnerability which is at-
tacked by another adversarial example in (2). Only model C
is robust with the same predictions and consistent interpre-
tations on both original/adversarial example pairs.

et al. 2020; Garg and Ramakrishnan 2020), sentence para-
phrasing (Ribeiro, Singh, and Guestrin 2018; Iyyer et al.
2018), and malicious triggers (Wallace et al. 2019). In this
paper, we focus on word substitution-based attacks, as the
generated adversarial examples largely maintain the original
semantic meaning and lexical and grammatical correctness
compared to other attacks (Zhang et al. 2020).

Previous methods on defending this kind of attacks via ad-
versary detection and prevention (Zhou et al. 2019; Mozes
et al. 2021) or certifiably robust training (Jia et al. 2019;
Huang et al. 2019) either circumvent improving model pre-
dictions on adversarial examples or scale poorly to complex
neural networks (Shi et al. 2020). Alternatively, adversarial
training (Jin et al. 2020; Li et al. 2021) improves model ro-
bustness via two steps—collecting adversarial examples by
attacking a target model, and fine-tuning the model on the
augmented dataset with these adversarial examples. How-
ever, existing adversarial training only focuses on making
a model produce the same correct predictions on an origi-
nal/adversarial example pair, while ignores the consistency
between model decision-makings on the two similar texts.



To illustrate the necessity of maintaining consistent model
decision-makings (reflected by interpretations) during ad-
versarial training, Fig. 1 shows both the predictions and their
corresponding interpretations of different models on origi-
nal/adversarial example pairs. The interpretations were gen-
erated by IG (Sundararajan, Taly, and Yan 2017), which vi-
sualizes the attribution of each input feature (word/token)
to the model prediction. Figure 1 (1) shows the predictions
and interpretations of model A, B, and C on a POSITIVE
movie review and its adversarial counterpart. Model A is
not robust as its prediction on the adversarial example is
flipped and the interpretation is totally changed. Although
model B makes the same predictions on the original and ad-
versarial examples, its interpretations reveal that these pre-
dictions are based on different key features: for the origi-
nal example, it is a sentiment word clever; for the adver-
sarial example, it is a neutral word cinema. The interpre-
tation discrepancy reveals the vulnerability of model B, as
shown in Fig. 1 (2), where we craft another adversarial at-
tack. Model B fails to recognize dull and pesky as the
same important, and makes a wrong prediction on the NEG-
ATIVE adversarial example based on cinema. Only model
C is robust as it behaves consistently on predicting both orig-
inal/adversarial example pairs. Note that we look at model
robustness through the lens of interpretations, while leaving
the problem of trustworthiness or robustness of an interpre-
tation method itself out as that is beyond the scope of this
paper.

Based on the previous discussion, we argue that a robust
model should have consistent prediction behaviors on orig-
inal/adversarial example pairs, that is making the same pre-
dictions (what) based on the same reasons (how) which are
reflected by consistent interpretations, as the word saliency
maps of model C in Fig. 1. However, traditional adversar-
ial training does not regularize model prediction behavior
for improving model robustness. To train a robust model,
we propose a fine-grained feature-level adversarial training
named FLAT. FLAT learns global word importance via
variational word masks (Chen and Ji 2020) and regularizes
the importance scores of the replaced words and their substi-
tutions in original/adversarial example pairs during training.
FLAT teaches the model to behave consistently on predict-
ing original/adversarial example pairs by focusing on the
corresponding important words based on their importance
scores, hence improving the model robustness to adversarial
examples.

The contribution of this work is three-fold: (1) we ar-
gue that adversarial training should improve model robust-
ness by making the model produce the same predictions on
original/adversarial example pairs with consistent interpre-
tations; (2) we propose a new training strategy, feature-level
adversarial training (FLAT), to achieve this goal by regu-
larizing model prediction behaviors on original/adversarial
example pairs to be consistent; and (3) we evaluate the ef-
fectiveness of FLAT in improving the robustness of four
neural network models, LSTM (Hochreiter and Schmidhu-
ber 1997), CNN (Kim 2014), BERT (Devlin et al. 2019), and
DeBERTa (He et al. 2021), to two adversarial attacks on four
text classification tasks. The models trained via FLAT also

show better robustness than baseline models on unforeseen
adversarial examples across six different attacks.

2 Related Work
Neural language models have shown vulnerability to adver-
sarial examples which are generated by manipulating input
texts, such as replacing words with their synonyms (Alzan-
tot et al. 2018; Ren et al. 2019; Jin et al. 2020; Li et al.
2021; Garg and Ramakrishnan 2020), introducing charac-
ter typos (Li et al. 2018; Gao et al. 2018), paraphrasing sen-
tences (Ribeiro, Singh, and Guestrin 2018; Iyyer et al. 2018),
and inserting malicious triggers (Wallace et al. 2019). In this
work, we focus on word substitution-based attacks as the
generated adversarial examples largely maintain the origi-
nal semantic meaning and lexical and grammatical correct-
ness compared to other attacks (Zhang et al. 2020). Some
methods defend this kind of attacks by detecting malicious
inputs and preventing them from attacking a model (Zhou
et al. 2019; Mozes et al. 2021; Wang et al. 2021). However,
blocking adversaries does not essentially solve the vulner-
ability problem of the target model. Another line of works
focus on improving model robustness, and broadly fall into
two categories: (1) certifiably robust training and (2) adver-
sarial training.

Certifiably robust training. Jia et al. (2019); Huang et al.
(2019) utilized interval bound propagation (IBP) to bound
model robustness. Shi et al. (2020); Xu et al. (2020) ex-
tended the robustness verification to transformers, while it
is challenging to scale these methods to complex neural net-
works (e.g. BERT) without loosening bounds. Ye, Gong, and
Liu (2020) proposed a structure-free certified robust method
which can be applied to advanced language models. How-
ever, the certified accuracy is at the cost of model perfor-
mance on clean data.

Adversarial training. Adversarial training in text domain
usually follows two steps: (1) collecting adversarial exam-
ples by attacking a target model and (2) fine-tuning the
model on the augmented dataset with these adversarial ex-
amples. The augmented adversarial examples can be real ex-
amples generated by perturbing the original texts (Jin et al.
2020; Li et al. 2021), produced by generation models (Wang
et al. 2020), or virtual examples crafted from word embed-
ding space by adding noise to original word embeddings
(Miyato, Dai, and Goodfellow 2017; Zhu et al. 2020) or
searching the worst-case in a convex hull (Zhou et al. 2021;
Dong et al. 2021).

The above methods improve model robustness by solely
looking at model predictions, that is making a model pro-
duce the same correct predictions on original/adversarial ex-
ample pairs. Nevertheless, a robust model should behave
consistently on predicting similar texts beyond producing
the same predictions. Regularizing model prediction behav-
ior should be considered in improving model robustness,
no matter via certifiably robust training or adversarial train-
ing. In this work, we focus on extending traditional adver-
sarial training to fine-grained feature-level adversarial train-
ing (FLAT), while leaving adding constraints on model be-
havior in certifiably robust training to future work. Besides,



Figure 2: (a) The model with variational word masks trained
on the standard training set. As marvelous is not recog-
nized as the same important as its synonym fantastic
and masked out, the model makes a wrong prediction based
on a neutral word movie. (b) FLAT increases the global
importance of marvelous and teaches the model to make
the same correct predictions on the original/adversarial ex-
ample pair by focusing on fantastic and marvelous
respectively.

FLAT is compatible with existing substitution-based adver-
sarial data augmentation methods. We focus on those (Jin
et al. 2020; Ren et al. 2019) that generate adversarial exam-
ples by perturbing original texts in our experiments.

Another related work bounds model robustness by regu-
larizing interpretation discrepancy between original and ad-
versarial examples in image domain (Boopathy et al. 2020).
However, the interpretations are post-hoc and could vary
across different interpretation methods. Differently, FLAT
learns global feature importance during training. By regu-
larizing the global importance of replaced words and their
substitutions, the model trained via FLAT would be robust
to unforeseen adversarial examples in which the substitution
words appear.

3 Method
This section introduces the proposed FLAT method. FLAT
aims at improving model robustness by making a model be-
have consistently on predicting original/adversarial example
pairs. To achieve this goal, FLAT leverages variational word
masks to select the corresponding words (e.g. fantastic
and marvelous in Fig. 2) from an original/adversarial ex-
ample pair for the model to make predictions. To ensure
the correctness of model predictions, variational word masks
learn global word importance during training and play as a
bottleneck teaching the model to make predictions based on
important words. Besides, FLAT regularizes the global im-
portance of the replaced words in an original example and
their substitutions in the adversarial counterpart so that the
model would recognize the corresponding words as the same
important (or unimportant), as Fig. 2 shows.

Preliminaries. Given an input x = [x1, . . . ,xn], where
xi ∈ Rd (i ∈ {1, . . . , n}) denotes the word embedding,
the model fθ(·) with parameter θ outputs a prediction la-
bel y = fθ(x) for text classification tasks. An adversarial
example x′ is crafted from x under some constraints, such
as maintaining the original semantic meaning. For word
substitution-based adversarial attacks, an adversarial exam-
ple replaces some words {xi} in the original example x
with their synonyms {x′i}. The adversarial example fools
the model to output a different label, i.e. y′ = fθ(x

′) 6= y.
We obtain a set of adversarial examples D′ =

{(x′(m), y(m))} by attacking the model on the original
dataset D = {(x(m), y(m))}. During adversarial training,
the model is trained on both original and adversarial exam-
ples (D∪D′). In addition to improving model prediction ac-
curacy on adversarial examples, adversarial training should
also make the model produce the same predictions on the
similar texts with consistent decision-makings. Failing to do
this would make the model vulnerable to unforeseen adver-
sarial examples crafted with the substitution words in some
other contexts. To achieve this goal, we propose the feature-
level adversarial training (FLAT) method.

3.1 Feature-level Adversarial Training
Recall the goal of FLAT is to train a robust model with con-
sistent prediction behaviors on original/adversarial example
pairs. There are two desiderata for FLAT:
1. Global feature importance scores φ. To teach the model

to recognize the replaced words in an original exam-
ple and their substitutions in the adversarial counterpart
as the same important (or unimportant) for predictions,
FLAT needs to learn the global importance score φxi

of
a word xi. Note that the “global” means the importance
score is solely dependent on the word (embedding).

2. Feature selection function gφ(·). To guide the model to
make predictions based on the corresponding important
words in the original and adversarial example respec-
tively, FLAT needs a feature selection function gφ(·).
gφ(x) selects important words from x based on their
global importance scores in φ. The selected words are
then forwarded to the model to output a prediction, i.e.
y = fθ(gφ(x)).

FLAT leverages variational word masks (Chen and Ji 2020)
to learn global feature importance scores and select impor-
tant features for model predictions, which will be introduced
in Section 3.2.

With the two desiderata, the objective of FLAT is formu-
lated as

min
θ,φ

Lpred + γLimp (1)

Lpred = E(x,y)∼D[L(fθ(gφ(x)), y)] (2)

+E(x′,y)∼D′ [L(fθ(gφ(x′)), y)]
Limp = E(x,x′)∼D∪D′ [

∑
i,xi 6=x′

i
|φxi
− φx′

i
|] (3)

where L(·, ·) denotes cross entropy loss. φ is a learnable
vector with the same dimension as the predefined vocabu-
lary, where φxi

∈ (0, 1) represents the global importance



of the word xi. γ ∈ R+ is a coefficient. Limp regularizes
the global importance scores of the replaced words {xi} and
their substitutes {x′i} in an original/adversarial example pair
(x,x′) by pushing φxi

and φx′
i

close. With similar impor-
tance scores, the associated word pair (xi,x

′
i) would be se-

lected by gφ(·) or not simultaneously. Lpred encourages the
model to make the same and correct predictions on the origi-
nal and adversarial example based on the selected important
words gφ(x) and gφ(x′) respectively. By optimizing the ob-
jective, the model learns to behave consistently on predicting
similar texts, hence having better robustness to adversarial
attacks.

3.2 Learning with Variational Word Masks
FLAT fulfills the two desiderata by training the model
(fθ(·)) with variational word masks (Chen and Ji 2020).
Specifically, variational word masks learn global word im-
portance φ during training and select important words for
the model to make predictions by masking out irrelevant or
unimportant words. For an input x = [x1, . . . ,xn], a set
of masks W = [Wx1 , . . . ,Wxn ] are generated based on φ,
where Wxi

∈ {0, 1} is a binary random variable with 0 and
1 indicating to mask out or select the word xi respectively.
The word importance score φxi

is the expectation of Wxi
,

that is the probability of the word xi being selected. The
feature selection function gφ(·) in Section 3.1 is defined as

gφ(x) =W � x, (4)

where � denotes element-wise multiplication.
To ensure the model concentrating on a few important

words to make predictions, we regularize W by maximiz-
ing its entropy conditioned on x. The intuition is that most
words in the vocabulary are irrelevant or noisy features (e.g.
stop words) to text classification tasks (Chen and Ji 2020).
The regularization onW will push the importance scores of
most irrelevant words close to 0.5, while making a few im-
portant words have relatively high importance scores (close
to 1), and the rest unimportant words have low scores (close
to 0). Under this constraint, we rewrite the prediction loss
Lpred in the objective (1) as

Lpred = E
(x,y)∼D

[Eq[L(fθ(W � x), y)]− βHq(W | x)]

+ E
(x′,y)∼D′

[Eq′ [L(fθ(W ′ � x′), y)]− βHq′(W
′ | x′)],

where q = qφ(W | x) and q′ = qφ(W
′ | x′) denote the

distributions of word masks on the original example x and
adversarial example x′ respectively, Hq(· | ·) is the condi-
tional entropy, and β ∈ R+ is a coefficient.

3.3 Connection
FLAT degrades to traditional adversarial training when all
words are regarded as equal important (all mask values are
1), and no constraint is added to regularize the importance
scores of associated words in original/adversarial example
pairs. Traditional adversarial training simply updates the
model on the augmented dataset D ∪D′ by optimizing

min
θ

E
(x,y)∼D

[L(fθ(x), y)] + E
(x′,y)∼D′

[L(fθ(x′)), y)]. (5)

Datasets C L #train #dev #test

SST2 2 19 6920 872 1821
IMDB 2 268 20K 5K 25K

AG 4 32 114K 6K 7.6K
TREC 6 10 5000 452 500

Table 1: Summary statistics of the datasets, where C is the
number of classes, L is the average sentence length, # counts
the number of examples in the train/dev/test sets.

With no constraint on model prediction behavior on predict-
ing similar texts, the model robustness is not guaranteed,
especially to unforeseen adversarial attacks, as the results
shown in experiments.

3.4 Implementation Specification
We utilize the amortized variational inference (Kingma and
Welling 2013) to approximate word mask distributions, and
learn the parameter φ (global word importance) via an in-
ference network which is a single-layer feedforward neural
network. For simplicity, we assume the word masks are mu-
tually independent and each mask is dependent on the word
embedding, that is qφ(W | x) =

∏n
i=1 qφ(Wxi

| xi). We
optimize the inference network with the model jointly via
stochastic gradient descent, and apply the Gumbel-softmax
trick (Jang, Gu, and Poole 2017; Maddison, Mnih, and Teh
2016) to address the discreteness of sampling binary masks
from Bernoulli distributions in backpropagation (Chen and
Ji 2020). In the inference stage, we multiply each word em-
bedding and its global importance score for the model to
make predictions.

We first train a base model on the original dataset, and
attack the model by manipulating the original training data
and collect adversarial examples. Then we train the model
on both original and adversarial examples via FLAT. We re-
peat the attacking and training processes 3-5 times (depend-
ing on the model and dataset) until convergence. Note that
in each iteration, we augment the original training data with
new adversarial examples generated by attacking the latest
checkpoint.

4 Experimental Setup
The proposed method is evaluated with four neural network
models in defending two adversarial attacks on four text
classification tasks.

Datasets. The four text classification datasets are: Stan-
ford Sentiment Treebank with binary labels SST2 (Socher
et al. 2013), movie reviews IMDB (Maas et al. 2011), AG’s
News (AG) (Zhang, Zhao, and LeCun 2015), and 6-class
question classification TREC (Li and Roth 2002). For the
datasets (e.g. IMDB) without standard train/dev/test split,
we hold out a proportion of training examples as the devel-
opment set. Table 1 shows the statistics of the datasets.

Models. We evaluate the proposed method with a recur-
rent neural network (Hochreiter and Schmidhuber 1997,
LSTM), a convolutional neural network (Kim 2014, CNN),



Models SST2 IMDB AG TREC

LSTM-base 84.40 88.03 91.08 90.80
LSTM-adv(Textfooler) 82.32 88.79 90.29 87.60
LSTM-adv(PWWS) 82.59 88.37 91.16 89.60
LSTM-FLAT (Textfooler) 84.79 89.17 91.00 91.00
LSTM-FLAT (PWWS) 83.69 88.52 91.37 91.20

CNN-base 84.18 88.63 91.32 91.20
CNN-adv(Textfooler) 82.15 88.81 90.99 89.20
CNN-adv(PWWS) 83.42 88.89 91.30 90.00
CNN-FLAT (Textfooler) 83.09 88.89 91.64 89.20
CNN-FLAT (PWWS) 83.31 88.99 91.03 89.20

BERT-base 91.32 91.71 93.59 97.40
BERT-adv(Textfooler) 91.38 92.50 90.30 96.00
BERT-adv(PWWS) 90.88 93.14 93.38 95.20
BERT-FLAT (Textfooler) 91.54 92.78 94.07 96.20
BERT-FLAT (PWWS) 91.05 93.11 93.09 96.60

DeBERTa-base 94.18 93.80 93.62 96.40
DeBERTa-adv(Textfooler) 94.40 92.86 92.84 95.60
DeBERTa-adv(PWWS) 94.78 94.17 92.96 96.40
DeBERTa-FLAT (Textfooler) 94.29 94.29 94.29 96.40
DeBERTa-FLAT (PWWS) 94.12 94.26 93.82 96.40

Table 2: Prediction accuracy (%) of different models on stan-
dard test sets.

and two state-of-the-art transformer-based models—BERT
(Devlin et al. 2019) and DeBERTa (He et al. 2021). The
LSTM and CNN are initialized with 300-dimensional pre-
trained word embeddings (Mikolov et al. 2013). We adopt
the base versions of both BERT and DeBERTa.

Attack methods. We adopt two adversarial attacks,
Textfooler (Jin et al. 2020) and PWWS (Ren et al. 2019).
Both methods check the lexical correctness and semantic
similarity of adversarial examples with their original coun-
terparts. The adversarial attacks are conducted on the Tex-
tAttack benchmark (Morris et al. 2020) with default settings.
During adversarial training, we attack all training data for
the SST2 and TREC datasets to collect adversarial exam-
ples, while randomly attacking 10K training examples for
the IMDB and AG datasets due to computational costs.

More details of experimental setup are in Appendix A.

5 Results
We train the four models on the four datasets with differ-
ent training strategies. The base model trained on the clean
data is named with suffix “-base”. The model trained via
traditional adversarial training is named with suffix “-adv”.
The model trained via the proposed method is named with
suffix “-FLAT”. For fairness, traditional adversarial training
repeats the attacking and training processes the same times
as FLAT. Table 2 shows the prediction accuracy of differ-
ent models on standard test sets. The attack method used
for generating adversarial examples during training is noted
in brackets. For example, “CNN-FLAT (Textfooler)” means
the CNN model trained via FLAT with adversarial exam-
ples generated by Textfooler attack. Different from previous
defence methods (Jones et al. 2020; Zhou et al. 2021) that

hurt model performance on clean data, adversarial training
(“adv” and “FLAT”) does not cause significant model per-
formance drop, and even improves prediction accuracy in
some cases. Besides, we believe that producing high-quality
adversarial examples for model training would further im-
prove model prediction performance, and leave this to our
future work. The rest of this section will focus on evaluat-
ing model robustness from both prediction and interpretation
perspectives. The evaluation results are recorded in Table 3.

5.1 Prediction Robustness
We evaluate the prediction robustness of well-trained mod-
els by attacking them with adversarial examples crafted from
original test examples. The model prediction accuracy on
adversarial examples is denoted as after-attack accuracy (Jin
et al. 2020). In Table 3, we omit the attack name in naming
a model (“-adv” or “-FLAT”) as it is trained with adversar-
ial examples generated by the corresponding attack method
(Textfooler or PWWS).

Table 3 shows that base models are easily fooled by ad-
versarial examples, achieving much lower after-attack accu-
racy than other models (“-FLAT” and “-adv”) trained with
adversarial examples. FLAT consistently outperforms tra-
ditional adversarial training, indicating the effectiveness of
regularizing model prediction behavior during adversarial
training in improving prediction robustness. All the mod-
els show better prediction robustness on multiclass topic
classification tasks (AG and TREC) than on binary senti-
ment classification tasks (SST2 and IMDB). Besides, the
after-attack accuracy on the IMDB dataset is the lowest for
most of the base models (especially LSTM-base). We sus-
pect that IMDB has longer average text length than other
datasets, which is easier to find successful adversarial ex-
amples. FLAT improves the after-attack accuracy of base
models 15%− 30% on the IMDB dataset.

5.2 Interpretation Consistency
Beyond prediction robustness, model robustness can also be
evaluated by comparing its decision-makings on predicting
original/adversarial example pairs, i.e. interpretation consis-
tency. Note that we obtain interpretations via local post-
hoc interpretation methods that identify feature (word/to-
ken) attributions to the model prediction per example. We
adopt two interpretation methods, IG (Sundararajan, Taly,
and Yan 2017) and LIME (Ribeiro, Singh, and Guestrin
2016), which are the representatives from two typical cat-
egories, white-box interpretations and black-box interpreta-
tions, respectively. IG computes feature attributions by inte-
grating gradients of points along a path from a baseline to the
input. LIME explains neural network predictions by fitting
a local linear model with input perturbations and producing
word attributions. For IG, we evaluate all test examples and
their adversarial counterparts. For LIME, we randomly pick
up 1000 example pairs for evaluation due to computational
costs. We evaluate interpretation consistency under two met-
rics, Kendall’s Tau order rank correlation (Chen et al. 2019;
Boopathy et al. 2020) and Top-k intersection (Chen et al.
2019; Ghorbani, Abid, and Zou 2019). For both metrics,



SST2 IMDB AG TREC

Attacks Models AA KT TI AA KT TI AA KT TI AA KT TI

Textfooler

LSTM-base 5.05 0.46 0.68 0.16 0.53 0.46 45.00 0.76 0.81 44.40 0.62 0.89
LSTM-adv 12.36 0.49 0.68 29.18 0.60 0.58 48.39 0.76 0.82 51.20 0.51 0.87

LSTM-FLAT 17.76 0.58 0.75 31.38 0.66 0.65 54.16 0.82 0.86 55.20 0.68 0.90

CNN-base 1.98 0.46 0.69 3.72 0.64 0.56 8.74 0.55 0.62 45.20 0.68 0.91
CNN-adv 2.53 0.52 0.72 16.04 0.71 0.65 15.84 0.55 0.62 52.60 0.71 0.92

CNN-FLAT 37.07 0.70 0.82 32.62 0.76 0.75 25.18 0.61 0.67 62.20 0.87 0.96

BERT-base 4.72 0.35 0.56 3.84 0.38 0.33 11.84 0.39 0.48 37.60 0.44 0.87
BERT-adv 5.60 0.33 0.56 23.28 0.34 0.25 30.67 0.25 0.40 40.00 0.52 0.89

BERT-FLAT 12.41 0.44 0.64 28.35 0.46 0.38 32.29 0.45 0.53 55.00 0.58 0.90

DeBERTa-base 5.22 0.64 0.76 2.82 0.71 0.72 12.12 0.60 0.63 39.00 0.69 0.92
DeBERTa-adv 7.96 0.60 0.73 8.38 0.81 0.77 25.70 0.61 0.62 42.80 0.69 0.93

DeBERTa-FLAT 11.59 0.70 0.79 24.62 0.83 0.78 31.62 0.62 0.65 49.60 0.73 0.94

PWWS

LSTM-base 11.64 0.51 0.71 0.29 0.55 0.48 54.53 0.82 0.86 54.40 0.66 0.90
LSTM-adv 18.73 0.57 0.74 23.68 0.63 0.61 61.17 0.84 0.88 64.20 0.61 0.88

LSTM-FLAT 19.66 0.60 0.75 25.00 0.69 0.67 62.41 0.85 0.89 67.80 0.79 0.94

CNN-base 8.29 0.53 0.72 4.36 0.72 0.59 18.86 0.57 0.64 54.20 0.71 0.91
CNN-adv 12.63 0.57 0.73 20.64 0.72 0.68 33.21 0.56 0.63 63.00 0.76 0.92

CNN-FLAT 14.83 0.58 0.74 20.70 0.73 0.69 71.37 0.91 0.93 65.60 0.77 0.93

BERT-base 11.70 0.37 0.57 7.08 0.36 0.32 32.34 0.28 0.40 51.60 0.52 0.87
BERT-adv 14.44 0.37 0.58 18.32 0.33 0.29 33.38 0.29 0.40 65.20 0.45 0.86

BERT-FLAT 14.61 0.44 0.64 25.08 0.41 0.36 49.16 0.30 0.42 68.20 0.64 0.90

DeBERTa-base 14.17 0.72 0.81 7.04 0.82 0.80 31.30 0.65 0.71 52.80 0.73 0.94
DeBERTa-adv 15.16 0.65 0.76 18.66 0.81 0.78 53.02 0.65 0.70 63.60 0.64 0.91

DeBERTa-FLAT 23.23 0.75 0.83 26.58 0.84 0.81 55.14 0.67 0.72 66.40 0.80 0.95

Table 3: Model robustness to adversarial attacks in terms of predictions and interpretations. AA: after-attack accuracy (%); KT:
Kendall’s Tau order rank correlation; TI: top-k intersection (k = 5).

we compute the interpretation consistency on correspond-
ing labels and take the average over all classes as the overall
consistency. Table 3 reports the results of IG interpretations.
The results of LIME interpretations (Table 8 in Appendix C)
show similar tendency.

Kendall’s Tau order rank correlation. We adopt this
metric to compare the overall rankings of word attributions
between different interpretations. Higher Kendall’s Tau or-
der rank correlation indicates better interpretation consis-
tency. The models (“-FLAT”) outperform other baseline
models (“-adv” and “-base”) with higher Kendall’s Tau or-
der rank correlations, showing that FLAT teaches models
to behave consistently on predicting similar texts. However,
traditional adversarial training cannot guarantee the model
robustness being improved as the interpretation discrepancy
is even worse than that of base models in some cases, such
as LSTM-adv and LSTM-base on the TREC dataset un-
der the Textfooler attack. As FLAT consistently improves
model interpretation consistency, no matter which interpre-
tation method (IG or LIME) is used for evaluation, we be-
lieve the model robustness has been improved.

Top-k intersection. We adopt this metric to compute the
proportion of intersection of top k important features iden-
tified by the interpretations of original/adversarial example
pairs. Note that we treat synonyms as the ”same” words.

Higher top-k intersection indicates better interpretation con-
sistency. Table 3 records the results of IG interpretations
when k = 5. The full results of top-k intersection with k
increasing from 1 to 10 are in Appendix C. Similar to the
results of Kendall’s Tau order rank correlation, the models
(“-FLAT”) outperform other baseline models (“-adv” and
“-base”) with higher top-k intersection rates, showing that
they tend to focus on the same words (or their synonyms) in
original/adversarial example pairs to make predictions.

6 Discussion
Visualization of interpretations. Interpretations show the
robustness of models (“-FLAT”) in producing the same pre-
dictions on original/adversarial example pairs with consis-
tent decision-makings. Figure 3 visualizes the IG interpre-
tations of LSTM- and CNN-based models on a POSITIVE
and NEGATIVE SST2 movie review respectively. The adver-
sarial examples of the two movie reviews were generated
by Textfooler. The base models (“-base”) were fooled by
adversarial examples. Although LSTM-adv correctly pre-
dicted the POSITIVE original/adversarial example pair, its
interpretations are discrepant with treat and is identi-
fied as the top important word respectively. For the NEG-
ATIVE adversarial example, CNN-adv failed to recognize
bad and wicked as synonyms and labeled them with op-
posite sentiment polarities, which explains its wrong pre-



Figure 3: Visualization of IG interpretations. The model
predictions are in “[ ]”. The color of each block represents
the word attribution to the model prediction.

Models PWWS Gene IGA PSO Clare BAE

LSTM-base 11.64 20.26 9.83 5.88 3.02 36.52
LSTM-adv 15.38 25.65 17.02 5.60 3.90 36.35
LSTM-FLAT 20.48 33.44 24.22 6.53 5.55 39.87

CNN-base 8.29 20.32 7.85 5.60 1.48 37.12
CNN-adv 8.68 16.42 6.26 5.60 1.04 35.48
CNN-FLAT 42.56 55.02 46.35 10.38 17.57 48.38

BERT-base 11.70 32.24 9.72 6.26 0.86 35.31
BERT-adv 13.01 34.49 10.87 6.64 1.04 36.74
BERT-FLAT 15.93 35.31 15.93 9.50 5.29 37.56

DeBERTa-base 14.17 37.12 12.19 6.75 0.55 38.61
DeBERTa-adv 17.52 37.18 12.85 7.96 1.07 40.14
DeBERTa-FLAT 21.80 48.16 28.17 13.01 1.37 44.54

Table 4: After-attack accuracy (%) of different models to
different attacks on the SST2 test set.

diction. Both LSTM-FLAT and CNN-FLAT correctly pre-
dicted the original/adversarial example pairs with consistent
interpretations.

Transferability of model robustness. The models trained
via FLAT show better robustness than baseline models
across different attacks. We test the robustness transferabil-
ity of different models, where “-adv” and “FLAT” were
trained with adversarial examples generated by Textfooler,
to six unforeseen adversarial attacks: PWWS (Ren et al.
2019), Gene (Alzantot et al. 2018), IGA (Wang, Jin, and
He 2019), PSO (Zang et al. 2020), Clare (Li et al. 2021),
and BAE (Garg and Ramakrishnan 2020), which generate
adversarial examples in different ways (e.g. WordNet swap
(Miller 1998), BERT masked token prediction). The details
of these attack methods are in Appendix A. Table 4 shows
the after-attack accuracy of different models on the SST2
test set. The models trained via FLAT achieve higher after-
attack accuracy than baseline models, showing better robust-
ness to unforeseen adversarial examples.

Ablation study. The regularizations on word masks and
global word importance scores in the objective (1) are im-
portant for improving model performance. We take the
LSTM-FLAT model trained with Textfooler adversarial ex-
amples on the SST2 dataset for evaluation. The optimal hy-
perparameters are β = 0.1, γ = 0.001. We study the effects
by setting β, γ, or both as zero. Table 5 shows the results.
Only with both regularizations, the model can achieve good

Figure 4: Scatter plots: (a) substitution frequency vs. word
frequency; (b) global importance vs. word frequency; (c)
global importance vs. substitution frequency.

prediction performance on the clean test data (standard accu-
racy) and adversarial examples (after-attack accuracy). We
observed that when β = 0, all masks are close to 1, fail-
ing to learn feature importance. When γ = 0, the model
cannot recognize some words and their substitutions as the
same important, which is reflected by the larger variance of
L1 norm on the difference between the global importance of
1000 randomly sampled words and 10 of their synonyms, as
Fig. 5 shows in Appendix D.

Hyperparameters SA AA

β = 0.1, γ = 0.001 84.79 17.76
β = 0.1, γ = 0 83.96 9.99
β = 0, γ = 0.001 84.34 8.18
β = 0, γ = 0 84.40 8.35

Table 5: The effects of FLAT regularizations on model per-
formance. SA: standard accuracy (%); AA: after-attack ac-
curacy (%)

Correlations. The learned global word importance, word
frequency, and word substitution frequency in adversarial
examples do not show strong correlations with each other.
We take the LSTM-FLAT trained with Textfooler on the
SST2 dataset for analysis. As the scatter plots in Fig. 4 show,
any two of the three do not have strong correlations (as their
Pearson correlations show in Table 9 in Appendix D). Fig-
ure 4 (a) shows that the replaced words are not based on
their frequency. Figure 4 (b) and (c) show that global word
importance scores were learned during training, not trivially
based on word frequency or substitution frequency. It is ex-
pected the words that have high substitution frequency in
adversarial examples have high importance scores. In addi-
tion, FLAT also identifies some important words that are
low-frequency or even not replaced by adversarial examples.

7 Conclusion
In this paper, we look into the robustness of neural network
models from both prediction and interpretation perspectives.
We propose a new training strategy, FLAT, to regularize a
model prediction behavior so that it produces the same pre-
dictions on original/adversarial example pairs with consis-
tent interpretations. We test FLAT with four neural network
models, LSTM, CNN, BERT, and DeBERTa, and show its
effectiveness in improving model robustness to two adver-
sarial attacks on four text classification tasks.
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Datasets vocab threshold length

SST2 13838 0 50
IMDB 29571 5 250

AG 21821 5 50
TREC 8095 0 15

Table 6: Pre-processing details on the datasets. vocab: vocab
size; threshold: low-frequency threshold; length: mini-
batch sentence length.

A Supplement of Experimental Setup
Models. The CNN model (Kim 2014) contains a single
convolutional layer with filter sizes ranging from 3 to 5. The
LSTM (Hochreiter and Schmidhuber 1997) has a single uni-
directional hidden layer. We adopt the pretrained BERT-base
and DeBERTa-base models from Hugging Face2. We imple-
ment the models in PyTorch 1.7.

Datasets. We clean up the text by converting all characters
to lowercase, removing extra whitespaces and special char-
acters. We tokenize texts and remove low-frequency words
to build vocab. We truncate or pad sentences to the same
length for mini-batch during training. Table 6 shows pre-
processing details on the datasets.

Attack methods. We conducted all the adversarial attacks
on the TextAttack benchmark (Morris et al. 2020) with de-
fault settings.

1. Textfooler (Jin et al. 2020): Textfooler generates adver-
sarial examples by replacing important words with syn-
onyms from the counter-fitting word embedding space
(Mrkšić et al. 2016). Part-of-speech (POS) checking and
semantic similarity checking via Universal Sentence En-
coder (USE) are adopted to select high-quality adversar-
ial examples.

2. PWWS (Ren et al. 2019): PWWS generates adversar-
ial examples by replacing words with their synonyms
in WordNet (Miller 1998) and replacing named entities
(NEs) with similar NEs.

3. Gene (Alzantot et al. 2018): Gene perturbs percentage of
words with their nearest neighbors in the GloVe embed-
ding space (Pennington, Socher, and Manning 2014) and
generates adversarial examples via genetic algorithms.

4. IGA (Wang, Jin, and He 2019): IGA is an improved
genetic based text attack method (Alzantot et al. 2018)
which allows to substitute a word with their synonyms in
the same position more than once.

5. PSO (Zang et al. 2020): PSO generates adversarial ex-
amples by swapping words from HowNet (Dong, Dong,
and Hao 2010).

6. Clare (Li et al. 2021): Clare is a context-aware adversar-
ial attack method. It applies masks on inputs and plugs in
an alternative using a pretrained masked language model
RoBERTa (Liu et al. 2019).

2https://github.com/huggingface/pytorch-transformers

Models SST2 IMDB AG TREC

LSTM-base 85.21 88.42 90.68 89.16
LSTM-adv(Textfooler) 83.95 88.52 89.63 88.72
LSTM-adv(PWWS) 83.49 88.56 90.97 87.39
LSTM-FLAT (Textfooler) 84.29 89.02 90.70 89.38
LSTM-FLAT (PWWS) 84.52 88.60 91.25 90.27

CNN-base 84.06 88.50 90.97 88.27
CNN-adv(Textfooler) 82.22 88.94 91.07 88.05
CNN-adv(PWWS) 82.91 88.84 91.03 89.16
CNN-FLAT (Textfooler) 83.72 88.78 91.40 88.70
CNN-FLAT (PWWS) 82.22 88.90 90.93 88.05

BERT-base 91.63 85.52 94.63 94.25
BERT-adv(Textfooler) 91.97 87.16 90.48 94.47
BERT-adv(PWWS) 90.67 94.02 94.52 94.47
BERT-FLAT (Textfooler) 91.40 87.32 94.80 94.91
BERT-FLAT (PWWS) 91.74 87.28 94.23 94.69

DeBERTa-base 93.81 88.64 94.25 94.69
DeBERTa-adv(Textfooler) 93.92 87.64 94.47 95.13
DeBERTa-adv(PWWS) 94.04 89.16 94.50 92.13
DeBERTa-FLAT (Textfooler) 93.46 89.52 94.73 94.69
DeBERTa-FLAT (PWWS) 93.35 89.44 94.68 95.13

Table 7: Validation accuracy (%) for each reported test ac-
curacy.

7. BAE (Garg and Ramakrishnan 2020): BAE replaces and
inserts tokens in the original text by masking a portion of
the text and leveraging a BERT masked language model
to generate alternatives for the masked tokens.

All experiments were performed on a single NVidia GTX
1080 GPU.

B Validation Performance
The corresponding validation accuracy for each reported test
accuracy is in Table 7.

C Supplement of Quantitative Evaluations
The results of model robustness with respect to LIME in-
terpretations are in Table 8, showing the same tendency as
those of IG interpretations reported in Table 3.

The top-k intersections of IG interpretations under the
Textfooler attack with k increasing from 1 to 10 are shown
in Fig. 6.

D Supplement of Discussion
Ablation study. To evaluate the effect of the regulariza-
tion on global importance scores of the replaced words and
their substitutions, we compare the LSTM-FLAT model
trained with parameters β = 0.1, γ = 0.001 and the other
one trained with β = 0.1, γ = 0. Fig. 5 shows the box plot of
L1 norm on the difference between the learned global impor-
tance of 1000 randomly sampled words and 10 of their syn-
onyms in the counter-fitting word embedding space (Mrkšić
et al. 2016). The results show that the model trained without
the regularization (β = 0.1, γ = 0) has larger variance on
the global importance scores of synonyms, which makes the



SST2 IMDB AG TREC

Attacks Models KT TI KT TI KT TI KT TI

Textfooler

LSTM-base 0.33 0.65 0.39 0.50 0.27 0.41 0.20 0.83
LSTM-adv 0.36 0.67 0.39 0.53 0.25 0.39 0.36 0.83

LSTM-FLAT 0.39 0.69 0.41 0.54 0.41 0.52 0.45 0.87
CNN-base 0.33 0.67 0.44 0.51 0.25 0.37 0.27 0.83
CNN-adv 0.35 0.68 0.46 0.53 0.25 0.38 0.32 0.84

CNN-FLAT 0.39 0.69 0.50 0.56 0.26 0.40 0.40 0.87
BERT-base 0.14 0.55 0.13 0.20 0.07 0.23 0.08 0.79
BERT-adv 0.13 0.54 0.10 0.17 0.07 0.23 0.10 0.79

BERT-FLAT 0.21 0.60 0.14 0.21 0.11 0.25 0.12 0.81
DeBERTa-base 0.21 0.55 0.17 0.25 0.08 0.23 0.13 0.81
DeBERTa-adv 0.20 0.54 0.12 0.19 0.08 0.23 0.13 0.81

DeBERTa-FLAT 0.22 0.56 0.19 0.26 0.09 0.24 0.14 0.82

PWWS

LSTM-base 0.36 0.67 0.39 0.52 0.26 0.41 0.19 0.82
LSTM-adv 0.38 0.68 0.35 0.52 0.26 0.41 0.22 0.82

LSTM-FLAT 0.42 0.71 0.40 0.55 0.27 0.43 0.25 0.83
CNN-base 0.37 0.68 0.43 0.52 0.26 0.39 0.19 0.83
CNN-adv 0.43 0.71 0.47 0.54 0.26 0.41 0.22 0.84

CNN-FLAT 0.47 0.73 0.51 0.55 0.27 0.42 0.25 0.85
BERT-base 0.14 0.55 0.13 0.21 0.07 0.22 0.08 0.79
BERT-adv 0.11 0.54 0.11 0.17 0.07 0.22 0.11 0.79

BERT-FLAT 0.25 0.60 0.24 0.31 0.08 0.24 0.13 0.80
DeBERTa-base 0.22 0.55 0.16 0.23 0.08 0.23 0.12 0.80
DeBERTa-adv 0.18 0.53 0.15 0.21 0.08 0.23 0.12 0.80

DeBERTa-FLAT 0.23 0.57 0.19 0.25 0.09 0.24 0.13 0.81

Table 8: Model robustness to adversarial attacks in terms of LIME interpretations. KT: Kendall’s Tau order rank correlation;
TI: top-k intersection (k = 5).

model fail to recognize some words and their substitutions
as the same important, resulting in relatively low after-attack
accuracy.

Correlations between global word importance, word fre-
quency, and word substitution frequency. The scatter
plots in Fig. 4 show the correlations between global word
importance, word frequency, and word substitution fre-
quency of LSTM-FLAT on the SST2 dataset. Any two of
the three do not have strong correlations, as their Pearson
correlations show in Table 9. Figure 4 (a) shows that ad-
versarial examples attack the model vulnerability by replac-
ing some words in original input texts, while the replaced
words are not based on their frequency. Figure 4 (b) and (c)
show that global word importance scores were learned dur-
ing training, not trivially based on word frequency or sub-
stitution frequency. It is obvious the words that have high
substitution frequency in adversarial examples have high im-
portance scores. FLAT can also recognize important words
with low frequency or even not replaced as they are impor-
tant for model predictions.

A trivial case of FLAT. FLAT automatically learns
global word importance and regularizes the importance be-
tween word pairs based on the model vulnerability detected

Correlation Coefficient r P-value

WI - WF -0.028 0.001
WI - SF 0.087 5.79e-5
WF - SF 0.162 1.65e-8

Table 9: Pearson correlations between global word impor-
tance (WI), word frequency (WF), and word substitution fre-
quency (SF).

by adversarial examples, rather than simply giving the same
importance to synonyms. We designed a trivial method for
comparison in our pilot experiments. Specifically, we clus-
ter similar words into different groups based on their dis-
tance in the counter-fitting word embedding space (Mrkšić
et al. 2016). Each group of words share the same mask with
the value initialized as 1. We train a CNN model with the
group masks which are applied on word embeddings on the
AG dataset. We test the model robustness with Textfooler
attack.

Table 10 shows model performance with different pre-
defined group numbers. This trivial method can not help
improve model prediction performance on either the stan-



Figure 5: Box plot of the L1 norm on the difference between
the global importance scores of 1000 randomly sampled
words and 10 of their synonyms. 1: β = 0.1, γ = 0.001;
2: β = 0.1, γ = 0.

dard test set or adversarial examples, even with the num-
ber of groups increased. Besides, the embedding space used
for clustering words is specified and the number of clusters
is predefined, which limit the applicability of this method
to defend more complex adversarial attacks. Motivated by
these observations, we proposed FLAT to automatically
learn and adjust word importance for improving model ro-
bustness via adversarial training.

Group number SA AA

10 91.13 1.20
20 90.97 1.92
30 91.13 1.40
40 91.13 1.46
50 91.09 1.38

Table 10: Model performance with different group numbers.
SA: standard accuracy (%); AA: after-attack accuracy (%)

E Hyperparameters for Reproduction
We tune hyperparameters manually for each model
to achieve the best prediction accuracy on standard
test sets. We experiment with different hyperparame-
ters, such as learning rate lr ∈ {1e − 5, 1e −
3, · · · , 0.1}, clipping norm clip ∈ {1e − 3, 1e −
2, · · · , 1, 5, 10}, β ∈ {0.00001, 0.1, · · · , 1000}, and γ ∈
{0.00001, 0.1, · · · , 1000}. All reported results are based on
one run for each setting.



(a) LSTM, SST2 (b) LSTM, IMDB (c) LSTM, AG (d) LSTM, TREC

(e) CNN, SST2 (f) CNN, IMDB (g) CNN, AG (h) CNN, TREC

(i) BERT, SST2 (j) BERT, IMDB (k) BERT, AG (l) BERT, TREC

(m) DeBERTa, SST2 (n) DeBERTa, IMDB (o) DeBERTa, AG (p) DeBERTa, TREC

Figure 6: Top-k intersection of IG interpretations for different models on the four datasets under the Textfooler attack with k
increasing from 1 to 10.


